桃子叶片病害识别(图像连续识别和视频识别,Python代码,pyTorch框架,深度卷积网络模型,很容易替换为其它模型,带有GUI识别界面)

 桃子叶片病害识别(图像连续识别和视频识别,Python代码,pyTorch框架,深度卷积网络模型,很容易替换为其它模型,带有GUI识别界面)_哔哩哔哩_bilibili

  1.数据集分为三类

健康的桃子叶片 ,251张

桃疮痂病一般,857张 

 

 桃疮痂病严重,770张 

2.项目文件 

 

第一个文件夹(data): 装载的是原始图像

第二个文件夹(piture):装载的是经hf.py对data文件夹处理后,生成的训练集和测试集

 第三个文件是class_indices.json是装载的标签和对应类别名称

第四个文件:CNN.pth是装载训练好的模型参数

第五个文件:GUI_VEDIO.py是呈现GUI界面,包括对图像连续识别和对视频识别

第六个文件:hf.py是对data文件夹进行操作,生成训练集和测试集

第七个文件:model.py是模型 

第八个文件:predict.py是对单独的照片(tulip.jpg)进行识别

第九个文件:train.pys是训练脚本

录屏的视频均可以被识别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值