C++ OpenCV点是否在给定的轮廓中来判断

寻找轮廓的方法在前面和章里面都经常用到了,如果我们判断一个点是否在轮廓里面的话,OpenCV有这个函数来进行判断。

相关API

double pointPolygonTest(InputArray contour, Point2f pt, bool measureDist)

  •  contour            ---输入轮廓

  •  pt                     ---针对轮廓需要测试的点

  •  measure_dist  ---如果非0,函数将估算点到轮廓最近边的距离。

用于测试一个点是否在多边形中
当measureDist设置为true时,若返回值为正,表示点在多边形内部,返回值为负,表示在多边形外部,返回值为0,表示在多边形上。
当measureDist设置为false时,若返回值为+1,表示点在多边形内部,返回值为-1,表示在多边形外部,返回值为0,表示在多边形上。

检测点的核心代码

代码段一

/// 得到轮廓  

std::vector<std::vector<cv::Point> > contours;   

std::vector<cv::Vec4i> hierarchy;  

cv::Mat src; //src为图像  

  

//contours为函数findContours计算得到的轮廓点分布值  

cv::findContours( src_copy, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);   

  

// 计算到轮廓的距离  

cv::Mat raw_dist( src.size(), CV_32FC1 );  

  

for( int j = 0; j < src.rows; j++ ){   

     for( int i = 0; i < src.cols; i++ ){   

          raw_dist.at<float>(j,i) = cv::pointPolygonTest( contours[0], Point2f(i,j), true );  



代码段二

/// 查找轮廓
std::vector<std::vector<cv::Point> > contours;
cv::Mat src; //src为输入图像

cv::findContours( src, contours, CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE,Point(0,0));

//判断p1(x,y)是否在轮廓内
cv::Point p1(x,y);
if (pointPolygonTest(Contours[j],cv::Point(x1,y1),false) == 1)
{    
    cout<<p1<<"在轮廓内"<<endl;
}


-END-

长按下方二维码关注

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vaccae

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值