算法思想:
一、没看答案:
- 暴力解法循环套循环,res_temp记录每次找到的结果,然后res更新为res和res_temp中的最小值,最终输出res。
C++
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
if(nums.empty()) return 0;
int res = INT_MAX;
int size = nums.size();
for(int i = 0; i < size; i++){
int temp = nums[i];
int res_temp = 1;
if(temp >= target){
return res_temp;
}
for(int j = i + 1; j < size; j++){
temp += nums[j];
res_temp++;
if(temp >= target){
res = min(res, res_temp);
break;
}
}
}
return res == INT_MAX ? 0 : res;
}
};
复杂度分析:
- 时间复杂度:O(n^2)。
- 空间复杂度:O(1)。
二、滑动窗口:
C++
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
if(nums.empty()) return 0;
int res = INT_MAX;
int size = nums.size();
int i = 0; // 滑动窗口起始位置
int sum = 0; // 滑动窗口数值之和
for(int j = 0; j < size; j++){
sum += nums[j];
while(sum >= target){
int res_temp = j - i + 1; // 子序列的长度
res = min(res, res_temp);
// 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
sum -= nums[i];
i++;
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return res == INT_MAX ? 0 : res;
}
};
复杂度分析:
- 时间复杂度:O(n)。
- 空间复杂度:O(1)。