原题地址:https://leetcode-cn.com/problems/minimum-size-subarray-sum/description/
题目描述:
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组。如果不存在符合条件的连续子数组,返回 0。
示例:
输入: s = 7, nums = [2,3,1,2,4,3]
输出: 2
解释: 子数组 [4,3] 是该条件下的长度最小的连续子数组。
进阶:
如果你已经完成了O(n) 时间复杂度的解法, 请尝试 O(n log n) 时间复杂度的解法。
解题方案:
使用O(n) 时间复杂度的解法,需要采用队列的方式输入数组元素:
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
queue<int> q;
int ans = 0, sum = 0;
for(auto &x: nums){
q.push(x);
sum += x;
if(sum >= s){
while(sum >= s){
sum -= q.front();
q.pop();
}
if(!ans)
ans = q.size() + 1;
else
ans = min(ans, (int)q.size() + 1);
}
}
return ans;
}
};
O(n log n) 时间复杂度的解法,采用双指针的方法,类似于滑动窗口的设计:
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
if (nums.empty())
return 0;
// 滑动窗口
int left = 0;
int right = -1;
int sum = 0;
int minlen = INT_MAX;
int len = nums.size();
while (right < len){
while (sum < s && right < len){
sum += nums[++right];
}
if (sum >= s){
if ((right - left + 1) <= minlen)
minlen = right - left + 1;
sum -= nums[left++];
}
}
return minlen < len ? minlen : 0;
}
};