电话号码的字母组合-回溯17-python

该博客主要介绍了一种使用回溯法解决电话号码字母组合问题的方法。通过建立数字与字母的映射关系,利用递归的回溯策略生成所有可能的字符串组合。在代码实现中,定义了一个`Solution`类,包含`letterCombinations`方法,该方法接受一个数字字符串作为输入,返回所有可能的字母组合列表。博客详细展示了如何进行剪枝操作以优化回溯过程,并给出了完整的Python代码实现。
摘要由CSDN通过智能技术生成

没看答案。

class Solution:
    def letterCombinations(self, digits: str) -> List[str]:
        res = []
        track = []
        k = len(digits)
        choice = []
        dic = { 
            2: ['a','b','c'],
            3: ['d','e','f'],
            4: ['g','h','i'],
            5: ['j','k','l'],
            6: ['m','n','o'],
            7: ['p','q','r','s'],
            8: ['t','u','v'],
            9: ['w','x','y','z']
            }
        if not digits:
            return []

        # 所有选择都加到数组choice中
        for num in digits:
            choice += dic[int(num)]


        def backtrack(track, start, pos):
            '''
            track:路径数组
            start: 循环的起始位置
            pos:digits中的第pos个数字,它决定了循环结束end的位置

            '''
            if len(track) == k:
                res.append(''.join(track))
                return
            
            end = start+len(dic[int(digits[pos])])

            for cho in range(start, end):
                track.append(choice[cho])
                # 因为数字对应的数组长度有3或4,所以start位置需要分情况计算
                # start和end的计算都是剪枝操作
                if choice[cho] in dic[7] or choice[cho] in dic[9]:
                    start = cho + 4 - (cho-start) % 4
                else:
                    start = cho + 3 - (cho-start) % 3
                pos += 1
                backtrack(track, start, pos)
                pos -= 1
                track.pop()

        backtrack(track, 0, 0)
        return res
问题:给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。给出数字到字母的映射和一个数字字符串,按按键顺序给出所有可能的字母组合。 根据题目要求,我们可以使用回溯算法来解决该问题。 具体算法步骤如下: 1. 定义一个映射表,将数字与字母的映射关系存储起来。 2. 定义一个结果列表,用于存储所有可能的字母组合。 3. 定义一个递归函数 backtracking,用于生成所有可能的字母组合。 - 递归函数参数包括当前生成的字母组合 combination、剩余待处理的数字字符串 digits 和当前处理的层数 level。 - 如果当前处理的层数等于数字字符串的长度,将当前生成的字母组合添加到结果列表中,并返回。 - 否则,获取当前层对应的数字,并依次取出映射的字母。 - 对于每个字母,将字母加入到当前生成的字母组合中,并递归调用 backtracking 函数处理下一层。 - 处理完毕后,将当前加入的字母移除,进行下一轮循环。 4. 调用递归函数 backtracking,传入初始的字母组合为空串,剩余待处理的数字字符串为给定数字字符串,层数初始值为 0。 5. 返回结果列表。 算法实现如下: ```python def letterCombinations(digits): if digits == "": return [] mapping = { '2': 'abc', '3': 'def', '4': 'ghi', '5': 'jkl', '6': 'mno', '7': 'pqrs', '8': 'tuv', '9': 'wxyz' } result = [] def backtracking(combination, digits, level): if level == len(digits): result.append(combination) return letters = mapping[digits[level]] for letter in letters: backtracking(combination + letter, digits, level + 1) backtracking("", digits, 0) return result ``` 测试样例: ```python print(letterCombinations("23")) # ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"] print(letterCombinations("")) # [] print(letterCombinations("2")) # ["a", "b", "c"] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值