给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2 1 2 5 6 2 3 4 5 1 3 0 0Sample Output
9 11分析:这是一个最短路问题,找一路径路径最短,输出它的距离和花费,因为有距离和花费俩个变量,所以我用了俩个二维数组分别储存俩点之间的距离和费用,用俩个一维数组dis和vis更新起点到各点的距离和费用,只不过在更新时需要在多更新一个数组,在输入时需要判重。
代码:
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; const int INF=0x3f3f3f3f; int n,m,s,t,a,b,d,p; int e[1010][1010]; //两点之间的距离 int f[1010][1010]; //俩点之间的花费 int dis[1010]; //起点到各点的距离 int vis[1010]; //起点到各店的花费 int book[1010]; int main() { while(~scanf("%d%d",&n,&m)&&(n+m)) { for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { if(i==j) { e[i][j]=0; f[i][j]=0; } else { e[i][j]=INF; f[i][j]=INF; } } } for(int i=1;i<=m;i++) { scanf("%d%d%d%d",&a,&b,&d,&p); if(d<e[a][b]) //判断 { e[a][b]=e[b][a]=d; f[a][b]=f[b][a]=p; } } scanf("%d%d",&s,&t); for(int i=1;i<=n;i++) //初始化 { book[i]=0; dis[i]=e[s][i]; vis[i]=f[s][i]; } book[s]=1; int k; for(int i=1;i<n;i++) { int min=INF; for(int j=1;j<=n;j++) { if(book[j]==0&&dis[j]<min) { min=dis[j]; k=j; } } book[k]=1; for(int j=1;j<=n;j++) { if(book[j]==0&&e[k][j]<INF) { if(dis[j]>dis[k]+e[k][j]) { dis[j]=dis[k]+e[k][j]; vis[j]=vis[k]+f[k][j]; } else if(dis[j]==dis[k]+e[k][j]&&vis[j]>dis[k]+f[k][j]) { dis[j]=dis[k]+e[k][j]; vis[j]=vis[k]+f[k][j]; } } } } printf("%d %d\n",dis[t],vis[t]); } }
HDU - 3790 C - 最短路径问题
最新推荐文章于 2020-07-21 11:03:39 发布