HDU - 3790 C - 最短路径问题

给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

Input

输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。 
(1<n<=1000, 0<m<100000, s != t)

Output

输出 一行有两个数, 最短距离及其花费。

Sample Input

3 2
1 2 5 6
2 3 4 5
1 3
0 0

Sample Output

9 11

分析:这是一个最短路问题,找一路径路径最短,输出它的距离和花费,因为有距离和花费俩个变量,所以我用了俩个二维数组分别储存俩点之间的距离和费用,用俩个一维数组dis和vis更新起点到各点的距离和费用,只不过在更新时需要在多更新一个数组,在输入时需要判重。

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
int n,m,s,t,a,b,d,p;
int e[1010][1010];  //两点之间的距离
int f[1010][1010];  //俩点之间的花费
int dis[1010];      //起点到各点的距离
int vis[1010];      //起点到各店的花费
int book[1010];
int main()
{
    while(~scanf("%d%d",&n,&m)&&(n+m))
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(i==j)
                {
                    e[i][j]=0;
                    f[i][j]=0;
                }
                else
                {
                    e[i][j]=INF;
                    f[i][j]=INF;
                }
            }
        }
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d%d",&a,&b,&d,&p);
            if(d<e[a][b])            //判断
            {
                e[a][b]=e[b][a]=d;
                f[a][b]=f[b][a]=p;
            }
        }
        scanf("%d%d",&s,&t);
        for(int i=1;i<=n;i++)        //初始化
        {
            book[i]=0;
            dis[i]=e[s][i];
            vis[i]=f[s][i];
        }
        book[s]=1;
        int k;
        for(int i=1;i<n;i++)
        {
            int min=INF;
            for(int j=1;j<=n;j++)
            {
                if(book[j]==0&&dis[j]<min)
                {
                    min=dis[j];
                    k=j;
                }
            }
            book[k]=1;
            for(int j=1;j<=n;j++)
            {
                if(book[j]==0&&e[k][j]<INF)
                {
                    if(dis[j]>dis[k]+e[k][j])     
                    {
                        dis[j]=dis[k]+e[k][j];
                        vis[j]=vis[k]+f[k][j];
                    }
                    else if(dis[j]==dis[k]+e[k][j]&&vis[j]>dis[k]+f[k][j])
                    {
                        dis[j]=dis[k]+e[k][j];
                        vis[j]=vis[k]+f[k][j];
                    }
                }
            }
        }
        printf("%d %d\n",dis[t],vis[t]);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值