Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.
Mr. Kitayuta wants you to process the following q queries.
In the i-th query, he gives you two integers — ui and vi.
Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.
Input
The first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.
The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).
The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.
Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.
Output
For each query, print the answer in a separate line.
题意:给出一个有向图,边分成不同的颜色,俩点间联通的边必须是同一颜色,问俩点间联通的路线有多少条。
分析:刚开始我想的是,建一个二维数组把边的颜色分别用不同的数字标记,最后遍历看每个颜色是否能联通,不过感觉太麻烦了,看别人的博客才发现可以用并查集,当时想过用并查集,但一维的标记不了那么多条边的颜色,后来才知道可以用二维的并查集,只是将一维的并查集稍微改了一下。
代码:
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int f[110][110]; int n,m; int getf(int v,int w) { if(f[v][w]==v) return v; return f[v][w]=getf(f[v][w],w); } int merge(int x,int y,int z) { int tx=getf(x,z); int ty=getf(y,z); if(tx!=ty) f[tx][z]=ty; } int main() { int t; while(~scanf("%d %d",&n,&m)) { int x,y,z,sum; for(int i=1; i<=100; i++) for(int j=1; j<=100; j++) f[i][j]=i; for(int i=1;i<=m;i++) { scanf("%d%d%d",&x,&y,&z); merge(x,y,z); } scanf("%d",&t); while(t--) { scanf("%d %d",&x,&y); sum=0; for(int i=1;i<=m;i++) if(getf(x,i)==getf(y,i)) sum++; printf("%d\n",sum); } } return 0; }
CodeForces - 505B C - Mr. Kitayuta's Colorful Graph
最新推荐文章于 2021-03-20 23:53:39 发布