Leetcode刷题-190727-栈

本文探讨了如何使用栈解决删除字符串中所有相邻重复项的问题,提供了一种正统且高效的算法实现,对比了模拟方法,强调了正确算法思路的重要性。

题目描述

原题地址: 删除字符串中的所有相邻重复项

大概意思是说在字符串中删除相邻相同的字符,直到没有可以删的为止。

巨明显的栈思路然而我第一次竟然是模拟的……太缺乏训练了,要加油了…

实现

第一次是傻乎乎的模拟,用的空间是很少但是这思路不是正统做法。不管怎么说还是放出来吧…

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

// 找到下一个不是null的有效字符进行比较并操作
private boolean checkNext(Character[] list, int i) {

int oindex = i;
Character origin = list[i];
Character next = list[++i];

if (origin == null) {
return false;
}

while (next == null) {
i = i + 1;
if (i >= list.length) {
return false;
}
next = list[i];
}

// 找到有效字符并比较
if (origin.equals(next)) {

// 重复就赋null
list[oindex] = null;
list[i] = null;
return true;
}

return false;
}

public String removeDuplicates(String S) {

Character[] list = new Character[S.length()];

for (int i = 0; i < list.length; i++) {
list[i] = S.charAt(i);
}

boolean redo = true;
while (redo) {
redo = false;
for (int i = 0; i < list.length - 1; i++) {
if (checkNext(list, i)) {
redo = true;
}
}
}

// 全部筛选完毕利用StringBuilder构造结果
StringBuilder sb = new StringBuilder();

for (Character c : list) {
sb.append(c == null ? "" : c);
}

return sb.toString();
}

想法太工程了…真的要加油了,真的太菜了…

看了一看题解瞬间明白这是一道考栈的题。虽然用时比模拟长而且空间也多,但是正统做法会节省很多时间。That’s important!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public String removeDuplicates(String S) {

Stack<Character> stack = new Stack<>();

char[] ss = S.toCharArray();

for (int i = 0; i < ss.length; i++) {
if (stack.empty()) {
stack.push(ss[i]);
}
else {
if (stack.peek() == ss[i]) {
stack.pop();
}
else {
stack.push(ss[i]);
}
}
}

StringBuilder sb = new StringBuilder();
for (Character c : stack) {
sb.append(c);
}

return sb.toString();
}

正统做法思路超清晰不过多介绍,写下这篇博客提醒自己不要再连这种低级问题也看不出来了。

【源码免费下载链接】:https://renmaiwang.cn/s/0e6hs 数字信号处理实习实验二离散信号的频谱分析MATLAB本实验旨在掌握离散时间信号的DTFT和DFT的MATLAB实现,熟悉DTFT和DFT之间的关系,了解信号不同变形的DFT与原信号DFT之间的关系,掌握系统函数和频率响应之间的关系。一、DTFT和DFT的概念DTFT(Discrete-Time Fourier Transform)是对离散时间信号进行频谱分析的重要工具,它可以将时域信号转换为频域信号,从而分析信号的频率特性。DFT(Discrete Fourier Transform)是DTFT的一种近似实现形式,它可以将有限长信号转换为频域信号。二、实验目的1. 掌握离散时间信号的DTFT和DFT的MATLAB实现2. 熟悉DTFT和DFT之间的关系3. 了解信号不同变形的DFT与原信号DFT之间的关系4. 掌握系统函数和频率响应之间的关系三、实验内容1. 自定义一个长度为8点的信号,信号幅度值也由自己任意指定,对该信号作DTFT,分别画出幅度谱和相位谱2. 对信号分别做8点、16点、32点DFT,分别与DTFT合并作图并比较DFT与DTFT之间的关系3. 在信号每两个相邻样本之间插入一个零值,扩充为16点序列,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较4. 将信号以8为周期扩展,得到长为16的两个周期,作DFT,画出幅度谱和相位谱,并与原序列的DFT进行比较5. 已知离散时间系统差分方程为y(n)-0.5y(n-1)+0.06y(n-2)=x(n)+x(n-1),求出并画出其频率响应6. 求该系统系统函数,并画极零点图,并通过freqz函数求频率响应四、设计流程1. 自定义序列为x=[1,2,3,4,5,8,9,7]2. 使用MATLAB实现DTFT和DFT3. 画出幅度谱和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值