Task02 回顾:
了解baseline文生图代码原理,尝试借助AI工具优化prompt创作自己的8张AIGC情景故事,并初步了解零代码文生图平台secpter webui。
本篇Task03内容:
了解微调的基本原理,对微调的各种参数有一个更加清楚的了解,提高文生图质量;
介绍引入文生图的工作流平台工具ComfyUI,来实现一个更加高度定制的文生图。
Part1:工具初探:ComfyUI应用场景探索
1.1 初识ComfyUI
1.1.1 ComfyUI的定义:
ComfyUI (基于Stable Diffusion模型)是GUI的一种,是基于节点工作的用户界面,主要用于操作图像的生成技术。
ComfyUI 的特别之处在于它采用了一种模块化的设计,把图像生成的过程分解成了许多小的步骤,每个步骤都是一个节点。这些节点可以连接起来形成一个工作流程,这样用户就可以根据需要定制自己的图像生成过程。
补充1:什么是GUI
GUI 是 "Graphical User Interface"(图形用户界面)的缩写。简单来说,GUI 就是你在电脑屏幕上看到的那种有图标、按钮和菜单的交互方式。GUI 使用户能够通过鼠标点击、触摸屏幕或其他输入设备来进行操作,而无需记住复杂的命令行指令。
1.1.2ComfyUI核心模块
核心模块由模型加载器、提示词管理器、采样器、解码器组成。
-
模型加载器:CheckpointLoader
CheckpointLoader是ComfyUI中的一个重要组件,用于加载和处理预训练模型的检查点(checkpoint)文件。在默认的工作流中,基础的模型文件都是通过CheckpointLoader来加载的,包含了Model, CLIP, VAE三个部分。
CheckpointLoader 具体运行原理:
加载模型参数(checkpoint文件中相关模型参数)——模型配置(根据加载参数创建模型层和链接)——权重映射(处理不同模型架构的变化的差异,确保正确映射关系)——兼容性和调整(通过插值、忽略、调整模型层适应改变的模型架构)——优化加载过程——接口和使用(允许用户选择特定checkpoint文件,用户可通过ComfyUI界面/API调用执行)
CheckpointLoader实际应用:
1.用户通过ComfyUI提供的图形用户界面或命令行工具选择一个checkpoint文件;
2.CheckpointLoader会读取这个文件,解析其中的数据,并将这些数据加载到相应的模型结构中;
3.模型被正确加载后用户就可以使用该模型来进行文本到图像的生成任务。
-
CLIP
CLIP本身指Contrasitive Language-Image Pre-training,是一种深度学习(Deep Learning)模型,它通过对比学习的方式来联合训练图像和文本的表示。通过无监督的方式(Unsupervised Learning)下学习到能够关联图像和文本的通用表示,使得模型能够理解和处理跨模态的数据。
CLIP模块将文本类型的输入变为模型可以理解的latent space embedding作为模型的输入。
补充2:关于latent space embedding
- Latent Space:
Latent space(潜在空间)是指一个抽象的高维空间,其中每个维度都代表了数据的某种特征或属性。其中数据点越相似,映射越近,反之亦然;
- Embedding:
Embedding 是一种将数据转换为稠密向量的技术,这些向量可以捕捉到原始数据的关键特征。机器学习领域,embedding 通常用于将离散的符号(如单词或类别标签)转换为连续的数值向量。
在CLIP中,latent space embedding 指的是模型将输入的图像和文本分别编码成向量(Embedding),使得这些向量在潜在空间(Latent Space)中尽可能地保持语义上的相似性。
CLIP具体运行原理:
数据准备(CLIP 使用大规模互联网抓取的图文对数据集进行训练)——模型架构(CLIP=Image Encoder(图型编码器)+Text Encoder(文本编码器),图型编码器基于CNN提取图像特征;文本编码器通过Transformer模型提取文本特征)——特征提取(通过上述2 Encoders提取特征转换为固定长度向量,即Latent Space Embeddings)——对比损失函数(训练模型使图像与文本匹配时距离较小,不匹配时距离较大)——训练过程(调整编码器参数并最小化对比损失函数)——推理阶段(模型训练完成后通过编码器生成最终的Latent Space Embeddings)
补充3:关于CNN&Transformer
- CNN:
CNN(Convolutional Neural Networks) 卷积神经网络,是一种常用的图像编码器架构,它可以自动学习图像的局部特征并进行层级抽象。
(参考好文:深入浅出图解CNN-卷积神经网络-CSDN博客)
- Transformer:
Transformer 是目前最常用的文本编码器架构之一。它通过自注意力机制(self-attention mechanism)来捕获文本中的依赖关系。即Transformer在处理每个词的时候,不仅会注意这个词本身以及它附近的词,还会去注意输入序列里所有其他的词,然后其余每个词不一样的注意力权重。Transformer有能力知道当前这个词和其他词之间的相关性有多强,即使两个词的位置隔得很远,Transform依然可以捕获他们之间的依赖关系。
![]()
CNN 3D信息输入输出过程 ![]()
Transformer原理示例
-
采样器
采样器(Sampler)是一种算法或过程,主要用于生成图像,特别是从文本描述或条件输入生成图像的过程。其从模型的潜在隐空间(latent space)生成样本
控制模型生成图像时不同的采样取值会影响最终输出图像的质量和多样性。采样器可以调节生成过程的速度和质量之间的平衡。

Sampler具体运行原理:
初始化(采样开始需seed种子/初始状态,最终被逐步迭代生成图像)——模型预测(每次迭代将隐空间中向量传递给模型并预测下一个状态,具体输出为下一步向量概率分布)——采样(从预测概率分布抽样下一个状态,方法确定/随机均可)——迭代(即采样过程,每次即时更新,次数可设定)——后处理(隐空间向量转换回像素空间后,被解码为图像)
补充4:关于SD的Sampler运行原理(与ComfyUI相似)
Stable Diffusion的基本原理是通过降噪的方式(如完全的噪声图像),将一个原本的噪声信号变为无噪声的信号(如人可以理解的图像)。其中的降噪过程涉及到多次的采样。采样的系数在KSampler中配置:
seed:控制噪声产生的随机种子,是一个随机噪声向量或者由其他过程产生的向量。
control_after_generate:控制seed在每次生成后的变化
steps:降噪的迭代步数,越多则信号越精准,相对的生成时间也越长
cfg:classifier free guidance决定了prompt对于最终生成图像的影响有多大。更高的值代表更多地展现prompt中的描述。
denoise: 多少内容会被噪声覆盖
sampler_name、scheduler:降噪参数。
-
解码器(VAE Decoder)
VAE模块的作用是将Latent space中的embedding解码为像素级别的图像
补充5:关于VAE
VAE (Variational Autoencoder) 是一种深度学习模型,它结合了自动编码器(Autoencoder)的概念与概率图模型的思想。VAE 的目标是学习数据集的高效表示,并能够从这种表示中重建原始数据。它由两个主要部分组成:
- 编码器(Encoder):将输入数据压缩成潜在空间中的一个向量。
- 解码器(Decoder):将潜在空间中的向量转换回原始数据空间。
理解VAE的工作原理有助于理解解码器的运作:
首先,对于Encoder的编码阶段工作流程:
- 输入图像:输入一幅图像到 VAE 的编码器。
- 编码:编码器将图像转换为潜在空间中的一个向量,通常是一个均值和标准差的组合,以描述潜在变量的概率分布。
- 采样:从这个概率分布中采样预测得到一个潜在向量 𝑧z,通常通过重参数化技巧完成
其次,对于Decoder解码阶段:
一旦得到了潜在向量 𝑧z,解码器的任务就是将 𝑧z 转换成与原始图像相似的新图像。解码阶段的工作流程如下:
解码:
- 输入:潜在向量 𝑧z 作为输入。
- 网络结构:解码器通常是一个神经网络,它会通过一系列的层来处理输入 𝑧z,这些层可以包括卷积层、全连接层等。
- 处理:每一层都会对 𝑧z 进行变换,逐渐将其转换为图像的特征表示。
重构:
- 输出:最后,解码器输出一个与原始图像具有相同维度的图像。
- 损失函数:为了训练 VAE,通常会计算重构图像与原始图像之间的差异(如 MSE 或交叉熵损失),并加上 KL 散度损失(确保潜在空间分布接近标准正态分布),从而优化整个模型。
而对于ComfyUI中解码器的运行原理同上,总体流程可归结为:
- 初始化:根据用户提供的条件,通过编码器得到条件向量。
- 采样:使用采样器从潜在空间中采样得到一个潜在向量 𝑧z。
- 解码:将 𝑧z 送入 VAE Decoder,解码器生成一幅图像。
- 输出:将生成的图像呈现给用户。
1.3 ComfyUI图片生成流程
Step1:选择模型
从可用的 AI 模型列表中选择合适的模型,例如 Stable Diffusion 或其他文本到图像模型。
Step2:构建工作流
在 ComfyUI 的图形界面上拖拽节点(用户友好可视化界面体现,手动调整体会生成技术!),并将它们连接起来以形成一个完整的图像生成或编辑流程。输入必要的参数,如文本提示、图像文件等。
Step3:执行生成
运行构建好的工作流,观察生成的结果。
Step4:调整与优化
如果需要,可以根据生成的结果调整参数或修改工作流,直至获得满意的效果。
1.4 ComfyUI的优势
1.4.1 模块化和灵活性:
ComfyUI 提供了一个模块化的系统,用户可以通过拖放不同的模块来构建复杂的工作流程。这种灵活性允许用户根据自己的需求自由组合和调整模型、输入、输出、和其他处理步骤。
1.4.2 可视化界面:
ComfyUI 提供了直观的图形界面,使得用户能够更清晰地理解和操作复杂的 AI 模型和数据流。这对没有编程背景的用户特别有帮助,使他们能够轻松构建和管理工作流程。
1.4.3 多模型支持:
ComfyUI 支持多个不同的生成模型,用户可以在同一平台上集成和切换使用不同的模型,从而实现更广泛的应用场景。
1.4.4 调试和优化:
通过其可视化界面,ComfyUI 使得调试生成过程变得更简单。用户可以轻松地追踪数据流,识别并解决问题,从而优化生成结果。
1.4.5 开放和可扩展:
ComfyUI 是一个开源项目,具有高度的可扩展性。开发者可以根据需要编写新的模块或插件,扩展系统功能,并根据项目需求进行定制。
1.4.6 用户友好性:
尽管其功能强大,但 ComfyUI 仍然保持了用户友好性,即使对于复杂任务,也能以相对简单的方式完成,使其成为生成式 AI 工作流程管理的有力工具。
1.2 20分钟速通安装ComfyUI
我们仍然使用魔搭社区提供的Notebook和免费的GPU算力体验来体验ComfyUI。
(指路:modelscope.cn和获得免费算力操作:https://blog.csdn.net/Vavyyy/article/details/141111366?spm=1001.2014.3001.5501)
下载脚本代码文件——进入ComfyUI安装文件——一键安装执行程序(10min)——进入预览界面
下载安装ComfyUI的执行文件和task1中微调完成Lora文件
当执行到最后一个节点的内容输出了一个访问的链接的时候,复制链接到浏览器中访问
(PS:如果链接访问白屏,或者报错,就等一会再访问重试,程序可能没有正常启动完毕,此时还不能生成图片)
git lfs install
git clone https://www.modelscope.cn/datasets/maochase/kolors_test_comfyui.git
mv kolors_test_comfyui/* ./
rm -rf kolors_test_comfyui/
mkdir -p /mnt/workspace/models/lightning_logs/version_0/checkpoints/
mv epoch=0-step=500.ckpt /mnt/workspace/models/lightning_logs/version_0/checkpoints/





1.3 浅尝ComfyUI工作流
1.3.1 不带Lora的工作流样例
Step1:下载工作流脚本
加载工作脚本需加载到刚刚安装的comfyUI上:
{
"last_node_id": 15,
"last_link_id": 18,
"nodes": [
{
"id": 11,
"type": "VAELoader",
"pos": [
1323,
240
],
"size": {
"0": 315,
"1": 58
},
"flags": {},
"order": 0,
"mode": 0,
"outputs": [
{
"name": "VAE",
"type": "VAE",
"links": [
12
],
"shape": 3
}
],
"properties": {
"Node name for S&R": "VAELoader"
},
"widgets_values": [
"sdxl.vae.safetensors"
]
},
{
"id": 10,
"type": "VAEDecode",
"pos": [
1368,
369
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 6,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 18
},
{
"name": "vae",
"type": "VAE",
"link": 12,
"slot_index": 1
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
13
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEDecode"
}
},
{
"id": 14,
"type": "KolorsSampler",
"pos": [
1011,
371
],
"size": {
"0": 315,
"1": 222
},
"flags": {},
"order": 5,
"mode": 0,
"inputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"link": 16
},
{
"name": "kolors_embeds",
"type": "KOLORS_EMBEDS",
"link": 17
}
],
"outputs": [
{
"name": "latent",
"type": "LATENT",
"links": [
18
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KolorsSampler"
},
"widgets_values": [
1024,
1024,
1000102404233412,
"fixed",
25,
5,
"EulerDiscreteScheduler"
]
},
{
"id": 6,
"type": "DownloadAndLoadKolorsModel",
"pos": [
201,
368
],
"size": {
"0": 315,
"1": 82
},
"flags": {},
"order": 1,
"mode": 0,
"outputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"links": [
16
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "DownloadAndLoadKolorsModel"
},
"widgets_values": [
"Kwai-Kolors/Kolors",
"fp16"
]
},
{
"id": 3,
"type": "PreviewImage",
"pos": [
1366,
468
],
"size": [
535.4001724243165,
562.2001106262207
],
"flags": {},
"order": 7,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 13
}
],
"properties": {
"Node name for S&R": "PreviewImage"
}
},
{
"id": 12,
"type": "KolorsTextEncode",
"pos": [
519,
529
],
"size": [
457.2893696934723,
225.28656056301645
],
"flags": {},
"order": 4,
"mode": 0,
"inputs": [
{
"name": "chatglm3_model",
"type": "CHATGLM3MODEL",
"link": 14,
"slot_index": 0
}
],
"outputs": [
{
"name": "kolors_embeds",
"type": "KOLORS_EMBEDS",
"links": [
17
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KolorsTextEncode"
},
"widgets_values": [
"cinematic photograph of an astronaut riding a horse in space |\nillustration of a cat wearing a top hat and a scarf |\nphotograph of a goldfish in a bowl |\nanime screencap of a red haired girl",
"",
1
]
},
{
"id": 15,
"type": "Note",
"pos": [
200,
636
],
"size": [
273.5273818969726,
149.55464588512064
],
"flags": {},
"order": 2,
"mode": 0,
"properties": {
"text": ""
},
"widgets_values": [
"Text encoding takes the most VRAM, quantization can reduce that a lot.\n\nApproximate values I have observed:\nfp16 - 12 GB\nquant8 - 8-9 GB\nquant4 - 4-5 GB\n\nquant4 reduces the quality quite a bit, 8 seems fine"
],
"color": "#432",
"bgcolor": "#653"
},
{
"id": 13,
"type": "DownloadAndLoadChatGLM3",
"pos": [
206,
522
],
"size": [
274.5334274291992,
58
],
"flags": {},
"order": 3,
"mode": 0,
"outputs": [
{
"name": "chatglm3_model",
"type": "CHATGLM3MODEL",
"links": [
14
],
"shape": 3
}
],
"properties": {
"Node name for S&R": "DownloadAndLoadChatGLM3"
},
"widgets_values": [
"fp16"
]
}
],
"links": [
[
12,
11,
0,
10,
1,
"VAE"
],
[
13,
10,
0,
3,
0,
"IMAGE"
],
[
14,
13,
0,
12,
0,
"CHATGLM3MODEL"
],
[
16,
6,
0,
14,
0,
"KOLORSMODEL"
],
[
17,
12,
0,
14,
1,
"KOLORS_EMBEDS"
],
[
18,
14,
0,
10,
0,
"LATENT"
]
],
"groups": [],
"config": {},
"extra": {
"ds": {
"scale": 1.1,
"offset": {
"0": -114.73954010009766,
"1": -139.79705810546875
}
}
},
"version": 0.4
}
1.3.2带Lora的工作流样例
工作流脚本(带Lora训练):
{
"last_node_id": 16,
"last_link_id": 20,
"nodes": [
{
"id": 11,
"type": "VAELoader",
"pos": [
1323,
240
],
"size": {
"0": 315,
"1": 58
},
"flags": {},
"order": 0,
"mode": 0,
"outputs": [
{
"name": "VAE",
"type": "VAE",
"links": [
12
],
"shape": 3
}
],
"properties": {
"Node name for S&R": "VAELoader"
},
"widgets_values": [
"sdxl.vae.safetensors"
]
},
{
"id": 10,
"type": "VAEDecode",
"pos": [
1368,
369
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 7,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 18
},
{
"name": "vae",
"type": "VAE",
"link": 12,
"slot_index": 1
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
13
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEDecode"
}
},
{
"id": 15,
"type": "Note",
"pos": [
200,
636
],
"size": {
"0": 273.5273742675781,
"1": 149.5546417236328
},
"flags": {},
"order": 1,
"mode": 0,
"properties": {
"text": ""
},
"widgets_values": [
"Text encoding takes the most VRAM, quantization can reduce that a lot.\n\nApproximate values I have observed:\nfp16 - 12 GB\nquant8 - 8-9 GB\nquant4 - 4-5 GB\n\nquant4 reduces the quality quite a bit, 8 seems fine"
],
"color": "#432",
"bgcolor": "#653"
},
{
"id": 13,
"type": "DownloadAndLoadChatGLM3",
"pos": [
206,
522
],
"size": {
"0": 274.5334167480469,
"1": 58
},
"flags": {},
"order": 2,
"mode": 0,
"outputs": [
{
"name": "chatglm3_model",
"type": "CHATGLM3MODEL",
"links": [
14
],
"shape": 3
}
],
"properties": {
"Node name for S&R": "DownloadAndLoadChatGLM3"
},
"widgets_values": [
"fp16"
]
},
{
"id": 6,
"type": "DownloadAndLoadKolorsModel",
"pos": [
201,
368
],
"size": {
"0": 315,
"1": 82
},
"flags": {},
"order": 3,
"mode": 0,
"outputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"links": [
19
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "DownloadAndLoadKolorsModel"
},
"widgets_values": [
"Kwai-Kolors/Kolors",
"fp16"
]
},
{
"id": 12,
"type": "KolorsTextEncode",
"pos": [
519,
529
],
"size": {
"0": 457.28936767578125,
"1": 225.28656005859375
},
"flags": {},
"order": 4,
"mode": 0,
"inputs": [
{
"name": "chatglm3_model",
"type": "CHATGLM3MODEL",
"link": 14,
"slot_index": 0
}
],
"outputs": [
{
"name": "kolors_embeds",
"type": "KOLORS_EMBEDS",
"links": [
17
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KolorsTextEncode"
},
"widgets_values": [
"二次元,长发,少女,白色背景",
"",
1
]
},
{
"id": 3,
"type": "PreviewImage",
"pos": [
1366,
469
],
"size": {
"0": 535.400146484375,
"1": 562.2001342773438
},
"flags": {},
"order": 8,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 13
}
],
"properties": {
"Node name for S&R": "PreviewImage"
}
},
{
"id": 16,
"type": "LoadKolorsLoRA",
"pos": [
606,
368
],
"size": {
"0": 317.4000244140625,
"1": 82
},
"flags": {},
"order": 5,
"mode": 0,
"inputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"link": 19
}
],
"outputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"links": [
20
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "LoadKolorsLoRA"
},
"widgets_values": [
"/mnt/workspace/models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt",
2
]
},
{
"id": 14,
"type": "KolorsSampler",
"pos": [
1011,
371
],
"size": {
"0": 315,
"1": 266
},
"flags": {},
"order": 6,
"mode": 0,
"inputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"link": 20
},
{
"name": "kolors_embeds",
"type": "KOLORS_EMBEDS",
"link": 17
},
{
"name": "latent",
"type": "LATENT",
"link": null
}
],
"outputs": [
{
"name": "latent",
"type": "LATENT",
"links": [
18
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KolorsSampler"
},
"widgets_values": [
1024,
1024,
0,
"fixed",
25,
5,
"EulerDiscreteScheduler",
1
]
}
],
"links": [
[
12,
11,
0,
10,
1,
"VAE"
],
[
13,
10,
0,
3,
0,
"IMAGE"
],
[
14,
13,
0,
12,
0,
"CHATGLM3MODEL"
],
[
17,
12,
0,
14,
1,
"KOLORS_EMBEDS"
],
[
18,
14,
0,
10,
0,
"LATENT"
],
[
19,
6,
0,
16,
0,
"KOLORSMODEL"
],
[
20,
16,
0,
14,
0,
"KOLORSMODEL"
]
],
"groups": [],
"config": {},
"extra": {
"ds": {
"scale": 1.2100000000000002,
"offset": {
"0": -183.91309381910426,
"1": -202.11110769225016
}
}
},
"version": 0.4
}
-
这里的Lora是我们Task1微调训练出来的文件
-
地址是:/mnt/workspace/models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt
-
大家如有有其他的Lora文件,可以在下面截图Lora文件地址区域更换成自己的地址
1.3.3 试运行结果展示


1.4 自我学习,快速提升
1.4.1 资源网站
名称 | 链接地址 |
在魔搭使用ComfyUI,玩转AIGC! | https://modelscope.cn/headlines/article/429 |
ComfyUI的官方地址 | https://github.com/comfyanonymous/ComfyUI |
ComfyUI官方示范 | https://comfyanonymous.github.io/ComfyUI_examples/ |
别人的基础工作流示范 | https://github.com/cubiq/ComfyUI_Workflows |
https://github.com/wyrde/wyrde-comfyui-workflows | |
工作流分享网站 | https://comfyworkflows.com/ |
推荐一个比较好的comfyui的github仓库网站 | https://github.com/ZHO-ZHO-ZHO/ComfyUI-Workflows-ZHO?tab=readme-ov-file |
1.4.2 魔搭官方教程
(指路PPT课件:登录 · 语雀)
Part2:Lora微调
2.1 Lora简介
LoRA (Low-Rank Adaptation) 微调,指低秩自适应,是一种用于在预训练模型上进行高效微调的技术。它可以通过高效且灵活的方式实现模型的个性化调整,使其能够适应特定的任务或领域,同时保持良好的泛化能力和较低的资源消耗。这对于推动大规模预训练模型的实际应用至关重要。
2.1.1 Lora微调的原理
LoRA通过在预训练模型的关键层中添加低秩矩阵来实现。这些低秩矩阵通常被设计成具有较低维度的参数空间,这样它们就可以在不改变模型整体结构的情况下进行微调。在训练过程中,只有这些新增的低秩矩阵被更新,而原始模型的大部分权重保持不变。
补充5:关于全量微调与LoRA微调
1. 微调:
针对模型在某一个方面不够精准,通过对数据调整的方法得到更新,从而得到某一个方面能力的提升,但同时是大模型的其他能力保持不变。
(避免模型能力的遗忘:即只调整模型少量部分, 保证原有能力不变)
而模型本质上由一堆参数构成,故调整对象也为相应参数。在调整参数的过程中,可以视作前后矩阵发生了一定的偏移量,而通过微调我们要学习的就是这个改动的量。我们对这个改动量的获得,有不同的学习方法。
2.关于LoRA模型的背景:
第一种就是对逐个参数改动量逐个学习,即全量微调。而参数的数量级非常大,常至千亿级甚至万亿级,故模型微调复杂度较高(如ChatGPT2)
(但注意!在大模型矩阵中有很多重复信息是多余的,也就是说内容虽然繁杂但表达信息有限,所以我们想要“去除”多余的内容只关注有效信息。)
而想要更加高效的微调模型,则可以通过PEPT,其中最常用的就是LoRA微调,去除冗余的信息(线性相关矩阵等)。而对应满足上述“有多余信息的矩阵”条件就是这种矩阵由于线性相关性,可以写作两个矩阵的乘积形式
E.g W=100K*K100,W是一个10000的方阵,而如果对应K能化作更小的乘积形式,可以继续分解。直到不能分解,即对应矩阵的秩(rank)——矩阵非线性相关的最大行/列数。意味着所谓K矩阵规模越大,所承载的信息量越多。而原来W中的10000个参数,转化为研究100+100=200个参数,大大减少了研究对象。
以上就是LoRA模型原理的核心思想。
(参考好文:LoRA principle.pdf)
2.2 Lora微调的优势
2.2.1快速适应新任务
在特定领域有少量标注数据的情况下,也可以有效地对模型进行个性化调整,可以迅速适应新的领域或特定任务。
2.2.2 保持泛化能力(Frozen Pre-trained Weights)
LoRA通过微调模型的一部分,有助于保持模型在未见过的数据上的泛化能力,同时还能学习到特定任务的知识
2.2.3资源效率
LoRA旨在通过仅微调模型的部分权重,而不是整个模型,从而减少所需的计算资源和存储空间。
2. 3 Lora详解
2.3.1 Task2中的的微调代码
import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
\ # 选择使用可图的Lora训练脚本DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
--pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors
\ # 选择unet模型
--pretrained_text_encoder_path models/kolors/Kolors/text_encoder
\ # 选择text_encoder(文本编辑器:以Transformer为主捕捉整合文字信息Weights)
--pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ # 选择vae模型
--lora_rank 16
\ # lora_rank 16 表示在权衡模型表达能力和训练效率时,选择了使用 16 作为秩,适合在不显著降低模型性能的前提下,通过 LoRA 减少计算和内存的需求
--lora_alpha 4.0
\ # 设置 LoRA 的 alpha 值,影响调整的强度
--dataset_path data/lora_dataset_processed
\ # 指定数据集路径,用于训练模型
--output_path ./models
\ # 指定输出路径,用于保存模型
--max_epochs 1
\ # 设置最大训练轮数为 1
--center_crop
\ # 启用中心裁剪,这通常用于图像预处理
--use_gradient_checkpointing
\ # 启用梯度检查点技术,以节省内存
--precision "16-mixed"
# 指定训练时的精度为混合 16 位精度(half precision),这可以加速训练并减少显存使用
""".strip()
os.system(cmd) # 执行可图Lora训练
代码流程解析:
选择脚本——选择unet模型——选择Text Encoder——选择VAE模型——通过LoRA设置rank数减少内存——设置LoRA Alpha值——指定数据集路径(训练模型)——指定输出路径(保存模型)——设置训练次数——图像预处理/节省内存/指定训练混合精度。
2.3.2 参数详情表
参数名称 | 参数值 | 说明 |
| models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors | 指定预训练UNet模型的路径 |
| models/kolors/Kolors/text_encoder | 指定预训练文本编码器的路径 |
| models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors | 指定预训练VAE模型的路径 |
| 16 | 设置LoRA的秩(rank),影响模型的复杂度和性能 |
| 4 | 设置LoRA的alpha值,控制微调的强度 |
| data/lora_dataset_processed | 指定用于训练的数据集路径 |
| ./models | 指定训练完成后保存模型的路径 |
| 1 | 设置最大训练轮数为1 |
| 启用中心裁剪,用于图像预处理 | |
| 启用梯度检查点,节省显存 | |
| "16-mixed" | 设置训练时的精度为混合16位精度(half precision) |
2.3.3 UNet、VAE和文本编码器的协作关系
-
UNet:负责根据输入的噪声和文本条件生成图像。在Stable Diffusion模型中,UNet接收由VAE编码器产生的噪声和文本编码器转换的文本向量作为输入,并预测去噪后的噪声,从而生成与文本描述相符的图像
-
VAE:生成模型,用于将输入数据映射到潜在空间(Latent Space),并从中采样以生成新图像。在Stable Diffusion中,VAE编码器首先生成带有噪声的潜在表示,这些表示随后与文本条件一起输入到UNet中
-
Text Encoder(文本编码器):将文本输入转换为模型可以理解的向量(Embedding)表示。在Stable Diffusion模型中,文本编码器使用CLIP模型将文本提示转换为向量,这些向量与VAE生成的噪声一起输入到UNet中,指导图像的生成过程
Part3 如何准备一个高质量的数据集
3.1 明确你的需求和目标
-
关注应用场景:确定你的模型将被应用到什么样的场景中(例如,艺术风格转换、产品图像生成、医疗影像合成等)。
-
关注数据类型:你需要什么样的图片?比如是真实世界的照片还是合成图像?是黑白的还是彩色的?是高分辨率还是低分辨率?
关注数据量:考虑你的任务应该需要多少图片来支持训练和验证
3.2 数据集来源整理
以下渠道来源均需要考虑合规性问题,请大家在使用数据集过程中谨慎选择。
来源类型 | 推荐 |
![]() 公开的数据平台 | 魔搭社区内开放了近3000个数据集,涉及文本、图像、音频、视频和多模态等多种场景,左侧有标签栏帮助快速导览,大家可以看看有没有自己需要的数据集。 其他数据平台推荐:
|
使用API或爬虫获取 |
|
数据合成 | 利用现有的图形引擎(如Unity、Unreal Engine)或特定软件生成合成数据,这在训练某些类型的模型时非常有用。 最近Datawhale联合阿里云天池,做了一整套多模态大模型数据合成的学习,欢迎大家一起交流。从零入门多模态大模型数据合成 |
数据增强 | 对于较小的数据集,可以通过旋转、翻转、缩放、颜色变换等方式进行数据增强。 |
购买或定制 | 如果你的应用是特定领域的,比如医学影像、卫星图像等,建议从靠谱的渠道购买一些数据集。 |