求 ∑a1i1=1 ∑a2i2=1 ... ∑anin=1gcd(i1,i2,...,in)gcd(i1,i2,...,in) (2≤n≤1000, 1≤ai≤100000)
先来考虑 n=2 的情况:
通过莫比乌斯反演可以得到:
ans= ∑a1G=1f(G)⌊a1G⌋⌊a2G⌋ 不妨设 a1≤a2
其中: f(G)=∑d|Gμ(Gd)dd
同理可以得出 n>2 的情况
ans= ∑a1G=1f(G)⌊a1G⌋⌊a2G⌋...⌊anG⌋ 不妨设 a1≤a2...n
其中: f(G)=∑d|Gμ(Gd)dd
现在面临的问题就是要解决 f(G)
由于
f(G)
函数中的求和是整除,不方便处理,不如换一个角度思考。枚举
d
,对
之后与普通的莫比乌斯反演相同
具体实现过程如下:
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
const int N = 100010, MOD = 1e9 + 7;
int a[N], mu[N], prime[N];
long long pre[N], f[N], po[N];
bool vis[N] = {1, 1};
int n, MAXN, pcnt, x, lim = 1 << 30, pos;
long long ans, res;
inline long long pow(long long a, long long b) {
long long c = 1;
while (b) {
if (b & 1) {
c = (ll)(c * a) % MOD; --b;
}
a = (ll)(a * a) % MOD; b >>= 1;
}
return c;
}
int main(void) {
freopen("supergcd.in", "r", stdin);
freopen("supergcd.out", "w", stdout);
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]); lim = min(lim, a[i]);
}
mu[1] = 1;
for (int i = 2; i <= lim; i++) {
if (!vis[i]) {
prime[pcnt++] = i; mu[i] = -1;
}
for (int j = 0; j < pcnt && (x = prime[j] * i) <= lim; j++) {
vis[x] = 1;
if (i % prime[j]) {
mu[x] = -mu[i];
} else {
mu[x] = 0; break;
}
}
}
for (int i = 1; i <= lim; i++) po[i] = pow(i, i);
for (int i = 1; i <= lim; i++)
for (int j = i; j <= lim; j += i)
f[j] = (f[j] + po[i] * mu[j / i] + MOD) % MOD;
for (int i = 1; i <= lim; i++) pre[i] = (pre[i - 1] + f[i]) % MOD; //预处理f(G)函数及其前缀和
for (int i = 1; i <= lim; i = pos + 1) {
pos = lim;
for (int j = 1; j <= n; j++) pos = min(pos, a[j] / (a[j] / i));
res = (pre[pos] - pre[i - 1] + MOD) % MOD;
for (int j = 1; j <= n; j++) res = (res * (a[j] / i)) % MOD;
ans = (ans + res) % MOD;
} //莫比乌斯反演
cout << ans << endl;
fclose(stdin); fclose(stdout);
return 0;
}