2024发论文&模型涨点之——小波变换+Transformer
小波变换(Wavelet Transform, WT)和Transformer是两种强大的工具,它们在各自的领域内有着广泛的应用。小波变换是一种数学方法,用于分析信号的时间-频率特性,而Transformer则是一种深度学习模型,主要用于处理序列数据,特别是在自然语言处理(NLP)领域。将两者结合起来,可以创造出一些创新的应用。
将小波变换与 Transformer 结合,可以充分发挥两者的优势。小波变换可以对数据进行预处理,提取出更有效的特征,然后将这些特征输入到 Transformer 中进行进一步的处理和分析,从而提高模型的性能和准确性。
小编整理了一些小波变换+Transformer论文合集,论文原文+开源代码需要的同学关注“AI科研灵感”公号,那边回复“小波变换+Transformer”获取。
论文1:
A Novel Digital Directional Transformer Protection Technique Based on Wavelet Packet
一种基于小波包的新型数字方向性变压器保护技术
方法
变压器保护技术:提出了一种新型的数字变压器保护技术,该技术基于从故障电流信号和故障前电压信号中导出的方向量。
小波包变换:使用小波包变换(WPT)来更细致地表征信号内容,同时考虑时间和频率域。
模拟测试:使用Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP)模拟11/132-kV变压器连接到132-kV电力系统