Codeforces 830D [DP]

Solution

考虑这样DP: dpi,j 表示 ihouse 中有 j 条路径的方案数。
答案就是dpn,1
考虑从 dpi1,j dpi1,k 转移到的状态。

  • 若不选取根, dpi,j+k+=dpi1,jdpi1,k
  • 若选取根,根自成一条路径, dpi,j+k+1+=dpi1,jdpi1,k
  • 若选取根,与其中一个子树中的点连成路径, dpi,j+k+=2dpi1,jdpi1,k(j+k)
  • 若选取根,与两个子树中的点连成路径, dpi,j+k1+=2(j+k2)dpi1,jdpi1,k

写完转移会发现每次 j k最少也是会转移到 j+k1 的。所以DP的第二维实际上也是 O(n) 的。
所以总复杂度是 O(n3) 的。

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 810;
const int MOD = 1000000007;
typedef long long ll;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

int n;
ll res;
ll dp[N][N];


int main(void) {
    read(n);
    dp[1][1] = dp[1][0] = 1;
    for (int i = 2; i <= n; i++)
        for (int j = 0; j <= n; j++)
            for (int k = 0; k + j <= n; k++) {
                res = dp[i - 1][j] * dp[i - 1][k] % MOD;
                dp[i][j + k] += 2 * res * (j + k) + res;
                dp[i][j + k + 1] += res;
                dp[i][j + k - 1] += res * (j + k) * (j + k - 1);
                dp[i][j + k] %= MOD;
                dp[i][j + k + 1] %= MOD;
                dp[i][j + k - 1] %= MOD;
            }
    cout << dp[n][1] << endl;
    return 0;
}
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值