[最小割]Baltic OI 2007 Escape

Description

给定 n R=100的圆,和一个 LW 的平面。
求删除最小的圆的数量,使得从 (0,ys) (L,ye) (0ys,yeW) 存在一条路径不与任何依旧存在的圆相交或相切。

Solution

刚开始傻逼了,以为是边连通度。。直接跑了最大流。。
把下边界记作点 S ,下边界记作T
若两个圆相切或相交就连边。
其实要求的是一个叫作点连通度的东西。
根据 Menger's theorem 可以把点 u 拆成入点和出点ui uo 然后按以下方式连边

  • cap(ui,uo)=1
  • cap(uo,vi)=(vo,ui)=+

然后根据最大流-最小割定理跑一边最大流就可以啦。
最开始写了一个枚举源汇点的东西。
其实这道题 S T是不可以作为删去的点的,那就可以直接以 So,Ti 为源汇点直接跑就好了。

#include <bits/stdc++.h>
using namespace std;

const int N = 1010;
const int INF = 1 << 28;
typedef pair<int, int> Pairs;

struct Point {
    int x, y;
    inline friend bool operator <(const Point &a, const Point &b) {
        return a.y == b.y ? a.x < b.x : a.y < b.y;
    }
};
struct edge {
    int to, next, cap;
    edge(int t = 0, int n = 0, int c = 0):to(t), next(n), cap(c) {}
};
Point p[N];
edge G[N * N << 1];
int n, L, W, S, T, Gcnt, clc, ans, e, pos, mn;
int head[N], deg[N];
int vis[N], d[N], cur[N];
queue<int> Q;

inline void AddEdge(int from, int to, int cap) {
    G[++Gcnt] = edge(to, head[from], cap); head[from] = Gcnt;
    G[++Gcnt] = edge(from, head[to], 0); head[to] = Gcnt;
}
inline void Add(int from, int to, int cap) {
    AddEdge(from + e, to, cap);
    AddEdge(to + e, from, cap);
    ++deg[from]; ++deg[to];
}
inline long long Dist2(Point &a, Point &b) {
    return (long long)(a.x - b.x) * (a.x - b.x) + (long long)(a.y - b.y) * (a.y - b.y);
}
bool bfs(int S, int T) {
    ++clc; d[S] = 0; d[T] = INF;
    Q.push(S); vis[S] = clc; int x, to;
    while (!Q.empty()) {
        x = Q.front(); Q.pop();
        for (int i = head[x]; i; i = G[i].next) {
            to = G[i].to;
            if (G[i].cap && vis[to] != clc) {
                Q.push(to); vis[to] = clc;
                d[to] = d[x] + 1;
            }
        }
    }
    return d[T] != INF;
}
int dfs(int u, int a) {
    if (a == 0 || u == T) return a;
    int flow = 0, f;
    for (int &i = cur[u]; i; i = G[i].next) {
        edge &e = G[i];
        if (d[e.to] == d[u] + 1 && e.cap
          && (f = dfs(e.to, min(a, e.cap))) > 0) {
                flow += f; e.cap -= f;
                G[i ^ 1].cap += f; a -= f;
                if (!a) break;
        }
    }
    return flow;
}
inline int MaxFlow(int S, int T) {
    int flow = 0;
    while (bfs(S, T)) {
        for (int i = 1; i <= 1000; i++) cur[i] = head[i];
        flow += dfs(S, INF);
    }
    return flow;
}

int main(void) {
    freopen("escape.in", "r", stdin);
    freopen("escape.out", "w", stdout);
    scanf("%d %d %d", &L, &W, &n);
    S = n + 1; T = n + 2;
    Gcnt = 1; e = n + 2;
    for (int i = 1; i <= n; i++) {
        scanf("%d %d", &p[i].x, &p[i].y);
        if (p[i].y <= 100) Add(S, i, INF);
        if (p[i].y + 100 >= W) Add(i, T, INF);
    }
    for (int i = 1; i <= n; i++)
        for (int j = i + 1; j <= n; j++)
            if (40000ll >= Dist2(p[i], p[j]))
                Add(i, j, INF);
    for (int i = 1; i <= e; i++)
        AddEdge(i, i + e, 1);
    ans = MaxFlow(S + e, T);
    printf("%d\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值