Solution S o l u t i o n
就是个背包DP咯。
答案长这个样子
ans=[xn]∏i=1m1−xaibi+ai1−xai
a
n
s
=
[
x
n
]
∏
i
=
1
m
1
−
x
a
i
b
i
+
a
i
1
−
x
a
i
考虑取个
ln
ln
lnans=∑i=1m(ln(1−xaibi+ai)−ln(1−xai))
ln
a
n
s
=
∑
i
=
1
m
(
ln
(
1
−
x
a
i
b
i
+
a
i
)
−
ln
(
1
−
x
a
i
)
)
根据
ln(1−xk)=−∑i≥1xkii
ln
(
1
−
x
k
)
=
−
∑
i
≥
1
x
k
i
i
展开,用一个桶存一下每个式子的贡献,展开的复杂度就是
O(nlnn)
O
(
n
ln
n
)
的。
最后求个 exp exp 就好了。 O(nlogn) O ( n log n ) 。
#include <bits/stdc++.h>
#define show(x) cerr << #x << " = " << x << endl
using namespace std;
typedef long long ll;
typedef pair<int, int> pairs;
const int N = 303030;
const int MOD = 998244353;
inline char get(void) {
static char buf[100000], *S = buf, *T = buf;
if (S == T) {
T = (S = buf) + fread(buf, 1, 100000, stdin);
if (S == T) return EOF;
}
return *S++;
}
template<typename T>
inline void read(T &x) {
static char c; x = 0; int sgn = 0;
for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
if (sgn) x = -x;
}
inline int pwr(int a, int b) {
int c = 1;
while (b) {
if (b & 1) c = (ll)c * a % MOD;
b >>= 1; a = (ll)a * a % MOD;
}
return c;
}
inline int ivs(int x) {
return pwr(x, MOD - 2);
}
inline int sum(int a, int b) {
a += b;
return a >= MOD ? a - MOD : a;
}
inline int sub(int a, int b) {
return a < b ? a - b + MOD : a - b;
}
inline void add(int &x, int a) {
x = sum(x, a);
}
namespace FNT {
const int MAXN = 303030;
int ww[MAXN], iw[MAXN];
int rev[MAXN];
int num;
inline void pre(int n) {
num = n;
int g = pwr(3, (MOD - 1) / n);
ww[0] = iw[0] = 1;
for (int i = 1; i < num; i++)
iw[n - i] = ww[i] = (ll)ww[i - 1] * g % MOD;
}
inline void fnt(int *a, int n, int f) {
static int x, y, *w;
w = (f == 1) ? ww : iw;
for (int i = 0; i < n; i++)
if (rev[i] > i)
swap(a[rev[i]], a[i]);
for (int i = 1; i < n; i <<= 1)
for (int j = 0; j < n; j += (i << 1))
for (int k = 0; k < i; k++) {
x = a[j + k];
y = (ll)a[j + k + i] * w[num / (i << 1) * k] % MOD;
a[j + k] = sum(x, y);
a[j + k + i] = sub(x, y);
}
if (f == -1){
int in = ivs(n);
for (int i = 0; i < n; i++)
a[i] = (ll)a[i] * in % MOD;
}
}
}
int inv[N];
inline void pre(int n) {
inv[1] = 1;
for (int i = 2; i <= n; i++)
inv[i] = (ll)(MOD - MOD / i) * inv[MOD % i] % MOD;
}
void getInv(int *a, int *b, int n) {
using namespace FNT;
static int tmp[N];
if (n == 1) return (void)(b[0] = ivs(a[0]));
getInv(a, b, n >> 1);
for (int i = 0; i < n; i++) {
tmp[i] = a[i]; tmp[i + n] = 0;
}
int L = 0; while (!(n >> L & 1)) L++;
for (int i = 0; i < (n << 1); i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << L);
fnt(tmp, n << 1, 1); fnt(b, n << 1, 1);
for (int i = 0; i < (n << 1); i++)
tmp[i] = (ll)b[i] * sub(2, (ll)tmp[i] * b[i] % MOD) % MOD;
fnt(tmp, n << 1, -1);
for (int i = 0; i < n; i++) {
b[i] = tmp[i]; b[n + i] = 0;
}
}
inline void getLn(int *a, int *b, int n) {
using namespace FNT;
static int da[N], ia[N], tmp[N];
for (int i = 0; i < (n << 1); i++)
tmp[i] = da[i] = ia[i] = 0;
getInv(a, ia, n);
for (int i = 1; i < n; i++)
da[i - 1] = (ll)a[i] * i % MOD;
int L = 0; while (!(n >> L & 1)) L++;
for (int i = 0; i < (n << 1); i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << L);
fnt(da, n << 1, 1); fnt(ia, n << 1, 1);
for (int i = 0; i < (n << 1); i++)
tmp[i] = (ll)da[i] * ia[i] % MOD;
fnt(tmp, n << 1, -1);
b[0] = b[n] = 0;
for (int i = 1; i < n; i++) {
b[i] = (ll)tmp[i - 1] * inv[i] % MOD;
b[n + i] = 0;
}
}
inline void getExp(int *a, int *b, int n) {
using namespace FNT;
static int lb[N];
if (n == 1) return (void)(b[0] = 1);
getExp(a, b, n >> 1);
for (int i = 0; i < (n << 1); i++) lb[i] = 0;
getLn(b, lb, n);
for (int i = 0; i < n; i++)
lb[i] = sub(a[i], lb[i]);
lb[0] = sum(lb[0], 1);
int L = 0; while (!(n >> L & 1)) L++;
for (int i = 0; i < (n << 1); i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << L);
fnt(b, n << 1, 1); fnt(lb, n << 1, 1);
for (int i = 0; i < (n << 1); i++)
b[i] = (ll)b[i] * lb[i] % MOD;
fnt(b, n << 1, -1);
for (int i = 0; i < n; i++) b[i + n] = 0;
}
int n, m, l, x, y;
int buc[N], f[N], g[N];
int main(void) {
freopen("1.in", "r", stdin);
freopen("1.out", "w", stdout);
FNT::pre(1 << 18);
pre(1 << 18);
read(n); read(m);
for (l = 1; l <= n; l <<= 1);
for (int i = 1; i <= m; i++) {
read(x); read(y);
if (!x) continue;
if (!y) y = n / x;
if ((ll)x * y + x < l) buc[x * y + x]--;
if (x < l) buc[x]++;
}
for (int i = 0; i < l; i++)
buc[i] = sum(buc[i], MOD);
for (int i = 1; i < l; i++)
for (int j = i; j < l; j += i)
f[j] = sum(f[j], (ll)buc[i] * inv[j / i] % MOD);
getExp(f, g, l);
for (int i = 1; i <= n; i++)
printf("%d\n", g[i]);
return 0;
}