多项式exp-ln学习小结

这篇博客探讨了多项式exp和ln的泰勒展开式、导数性质,以及牛顿迭代法在求解中的应用。通过泰勒展开,可以得到ln(x)和ex的表达式,并利用牛顿迭代法在模运算中高效求解exp。虽然理论时间复杂度为O(nlogn),但实际过程中涉及到多次转换,常数因子较大。
摘要由CSDN通过智能技术生成

前言

  • 其实多项式exp/ln好像考的频率不算很高
  • 不过总得来说只要多做生成函数计数题的话,多多少少还是会遇到的。

l n ( x ) ln(x) ln(x)的展开式

  • 通过泰勒展开,可以得到:
    − l n ( x ) = x 1 + x 2 2 + x 3 3 + . . . -ln(x)=\frac{x}{1}+\frac{x^2}{2}+\frac{x^3}{3}+... ln(x)=1x+2x2+3x3+...

l n ( x ) ln(x) ln(x)的导数

  • l n ( x ) ln(x) ln(x)有一个特殊的性质,就是如果 f ( x ) = l n ( x ) f(x)=ln(x) f(x)=ln(x),则 f ′ ( x ) = 1 x f'(x)=\frac{1}{x} f(x)=x1
  • 那么对于一个多项式 A A A,我们可以考虑先求出 B = A − 1 B=A^{-1} B=A1,然后把 B B B积分回去,就可以得到 l n ( A ) ln(A) ln(A)了。

e x e^x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值