前言
其实多项式exp/ln好像考的频率不算很高- 不过总得来说只要多做生成函数计数题的话,多多少少还是会遇到的。
l n ( x ) ln(x) ln(x)的展开式
-
通过泰勒展开,可以得到:
− l n ( x ) = x 1 + x 2 2 + x 3 3 + . . . -ln(x)=\frac{x}{1}+\frac{x^2}{2}+\frac{x^3}{3}+... −ln(x)=1x+2x2+3x3+...
l n ( x ) ln(x) ln(x)的导数
- l n ( x ) ln(x) ln(x)有一个特殊的性质,就是如果 f ( x ) = l n ( x ) f(x)=ln(x) f(x)=ln(x),则 f ′ ( x ) = 1 x f'(x)=\frac{1}{x} f′(x)=x1。
- 那么对于一个多项式 A A A,我们可以考虑先求出 B = A − 1 B=A^{-1} B=A−1,然后把 B B B积分回去,就可以得到 l n ( A ) ln(A) ln(A)了。