POJ 3155 Hard Life 最大密度子图

题意:给n个点m条边,选定一个区域使边数与点数的比值最大。 


证明见胡伯涛《最小割模型在信息学竞赛中的应用》

不过证明中有错误(一个系数),着实被坑了一把...在P24页下面那段证明中,正确的证明在何亮的课件《图论杂项》中给出。传送门

好在这段只是证明解题思路, 后面的建边与求解又是单独的一块, 所以并不影响整篇论文的正确性...(这么多年怎么就没哪位大牛纠正一下..这不贻害后人么....)

在P25页中,给出了建图的方式,并在26页中给出了证明。

至于为什么这么建...额...木有讲...难道大牛们都是猛然间顿悟出怎么建的图然后才证明...?


解题方法:分数规划,还是论文上的东西,包括主算法和改进算法都在上面,我就只讲解题方法了。

先设定一个足够大的常数U (U=m 就足够了)

二分枚举猜测值,对于每个猜测值g重构图,

h(g)=(U*n-最小割) / 2.

建图:

对于每个点Vi,建c(S,Vi)=U,  c(Vi,T)=U + 2*g - Di     (Di为Vi的度) 

对于原图的每条边(u,v),建c(u,v)=1,c(v,u)=1


在每次建图中,唯一发生变化的边是Vi到T的边,最小割也因为这些边的变化而变化

随着猜测值g的递增而递增,直到上限U*n (割掉所有从s到Vi的边)

所以最小割与g的图像时这样的


而h(g)与g之间的图像时这样的


红色圈起来的点即为我们要求的点,也就是h(g)为0时的值。

然后用这个g值求一次最小割,按残余流量进行遍历,能遍历到的点即为要输出的点。(至于为什么,我在2987中给出了类似的证明)

贴代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
using namespace std;
#define FOR(i,l,r) for(int i=(l);i<=(r);++i)
#define REP(i,n) for(int i=0;i<(n);++i)
#define DSC(i,r,l) for(int i=(r);i>=(l);--i)
#define eps 1e-5 //精度
#define N 110
#define M 3000
#define INF 1e8
struct
{
    int to,next;
    double c;
}edge[M];
int head[N],level[N],ip;
int que[N],degree[N],ans[N];//degree记录度,ans记录最后能遍历到的点
bool makelevel(int s,int t)
{
    memset(level,0,sizeof(level));
    int iq=0;
    que[iq++]=s;
    level[s]=1;
    int top;
    for(int i=0;i<iq;i++)
    {
        top=que[i];
        if(top==t)  return 1;
        for(int k=head[top];k!=-1;k=edge[k].next)
        {
            if(!level[edge[k].to]&&edge[k].c>eps)
            {
                que[iq++]=edge[k].to;
                level[edge[k].to]=level[top]+1;
            }
        }
    }
    return 0;
}
double dfs(int now,double maxf,int t)
{
    if(now==t)  return maxf;
    double  ret=0,c;
    for(int k=head[now];k!=-1;k=edge[k].next)
    {
        if(edge[k].c>eps&&level[edge[k].to]==(level[now]+1))
        {
            c=dfs(edge[k].to,min(maxf-ret,edge[k].c),t);
            edge[k].c-=c;
            edge[k^1].c+=c;
            ret+=c;
            if(fabs(ret-maxf)<eps)   return ret;
        }
    }
    if(!ret) level[now]-=2;
    return ret;
}
double  dinic(int s,int t)
{
    double  ans=0;
    while(makelevel(s,t))   ans+=dfs(s,INF,t);
    return ans;
}
void add(int u,int v,double c,double f) //有向边f为0 ,否则为 c
{
    edge[ip].to=v;edge[ip].c=c;edge[ip].next=head[u];head[u]=ip++;
    edge[ip].to=u;edge[ip].c=f;edge[ip].next=head[v];head[v]=ip++;
}
//前面为模板,不用看了
struct
{
    int x,y;
}f[M];
void build(double mid,int n,int m)
{
    memset(head,-1,sizeof(head)); ip=0;
    REP(i,m) add(f[i].x,f[i].y,1,1);
    FOR(i,1,n)
    {
        add(0,i,(double)m,0);
        add(i,n+1,(double)m + 2.0*mid -(double)degree[i] ,0 );
    }
}
void dfs1(int pos,int &num) //最后遍历求要选的点
{
    level[pos]=1;
    ans[num++]=pos;
    for(int p=head[pos];p!=-1;p=edge[p].next)
    {
        if(edge[p].c>0 && !level[ edge[p].to ] )
        dfs1(edge[p].to,num);
    }
}

int main()
{
    int n,m;
    while(cin>>n>>m)
    {
        if(m==0)
        {
            cout<<1<<endl<<1<<endl;
            continue;
        }
        memset(degree,0,sizeof(degree));
        REP(i,m)
        {
            scanf("%d%d",&f[i].x,&f[i].y);
            degree[ f[i].x ]++;
            degree[ f[i].y ]++;
        }
        double l=1.0/n,r=(double)m,mid=(l+r)/2.0,temp;
        while(r-l>1.0/n/n)//胡伯涛的论文给出了证明,不同解之间误差的精度不超过1/(n*n)
        {
            build(mid,n,m);    //每次二分要重构图
            temp=((double) n*m - dinic(0,n+1))/2.0;
            if(temp>eps) l=mid;
            else r=mid;
            mid=(l+r)/2.0;
        }

        build(l,n,m); //用mid值建图容易wa,因为你此时的mid不一定满足h(mid)>eps,但是l一定是满足的
        dinic(0,n+1);
        int num=0;
        memset(level,0,sizeof(level));//重新利用一下这个数组,记录点是否被遍历过
        dfs1(0,num);
        sort(ans,ans+num);
        cout<<num-1<<endl;
        FOR(i,1,num-1)  printf("%d\n",ans[i]);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值