模板题。
点数为
n
+
m
n+m
n+m的方法很容易想。
点数为
n
n
n的方法详见胡伯涛论文。
具体来说,用最小割:
S
−
>
u
S->u
S−>u的边被割代表
u
u
u不在最大密度子图内。
u
−
>
T
u->T
u−>T的边被割代表在。
那么先分数规划二分答案,再求最小割即可得到最大密度子图和联通最大密度子图与其反图的边的式子,配下系数即可得出密度。
注意分数规划中要保证分母不为零,但是分母为0的方案(没有边也没有点)
∣
E
∣
−
a
n
s
∣
V
∣
=
0
|E|-ans|V|=0
∣E∣−ans∣V∣=0,所以对这个题来说我们求的方案应该是
∣
E
∣
−
a
n
s
∣
V
∣
=
e
p
s
|E|-ans|V|=eps
∣E∣−ans∣V∣=eps的。
精度搞大点可以无特判通过。
A C C o d e \rm AC\ Code AC Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cctype>
#define maxn 105
#define maxm 3005
#define inf 1e7
#define Clear(a,b) memset(a,b,sizeof a)
#define Copy(a,b) memcpy(a,b,sizeof a)
using namespace std;
int n,m,x[maxm],y[maxm],in[maxn];
int info[maxn],buf[maxn],Prev[maxm],to[maxm],cnt_e;;
double cap[maxm];
void Node(int u,int v,double c){ Prev[++cnt_e]=info[u],info[u]=cnt_e,to[cnt_e]=v,cap[cnt_e]=c; }
void Line(int u,int v,double c,double d=0){ Node(u,v,c),Node(v,u,d); }
int S,T,h[maxn],g[maxn];
double aug(int u,double mx){
if(u == T) return mx;
double st = mx , inc;
for(int &i=info[u],v;i;i=Prev[i])
if(cap[i]>0 && h[v=to[i]]+1==h[u]){
inc = aug(v,min(st,cap[i]));
st -= inc , cap[i] -= inc , cap[i^1] += inc;
if(st <= 0){ info[u]=buf[u]; return mx-st;}
}
if(!--g[h[u]]) h[S]=T+1;
++g[++h[u]];info[u]=buf[u];
return mx - st;
}
bool vis[maxn];
vector<int>ans;
void dfs(int u){
vis[u]=1;if(u<=n) ans.push_back(u);
for(int i=info[u];i;i=Prev[i]) if(!vis[to[i]] && cap[i]>0) dfs(to[i]);
}
int main(){
scanf("%d%d",&n,&m);S=n+1,T=n+2;
for(int i=1;i<=m;i++) scanf("%d%d",&x[i],&y[i]),in[x[i]]++,in[y[i]]++;
double L=0,R=m,mid;
for(int stp=0;stp<=100;stp++){
mid = (L+R) * 0.5;
Clear(info,0),cnt_e=1;
for(int i=1;i<=n;i++) Line(S,i,m),Line(i,T,m+mid-in[i]/2.0);
for(int i=1;i<=m;i++) Line(x[i],y[i],0.5,0.5);
Clear(h,0),Clear(g,0),Copy(buf,info);
double stm = -m*n;
for(;h[S]<=T;) stm+=aug(S,inf);
if(stm < -1e-5) L = mid;
else R = mid;
}
Clear(info,0),cnt_e=1;
for(int i=1;i<=n;i++) Line(S,i,m),Line(i,T,m+L-in[i]/2.0);
for(int i=1;i<=m;i++) Line(x[i],y[i],0.5,0.5);
Clear(h,0),Clear(g,0),Copy(buf,info);
double stm = -m*n;
for(;h[S]<=T;) stm+=aug(S,inf);
dfs(S);
sort(ans.begin(),ans.end());
if(ans.size() == 0) ans.push_back(1);
printf("%d\n",ans.size());
for(int i=0;i<ans.size();i++) printf("%d\n",ans[i]);
}