Hard Life POJ - 3155(最大密度子图)

模板题。
点数为 n + m n+m n+m的方法很容易想。
点数为 n n n的方法详见胡伯涛论文。
具体来说,用最小割:
S − > u S->u S>u的边被割代表 u u u不在最大密度子图内。
u − > T u->T u>T的边被割代表在。
那么先分数规划二分答案,再求最小割即可得到最大密度子图和联通最大密度子图与其反图的边的式子,配下系数即可得出密度。
注意分数规划中要保证分母不为零,但是分母为0的方案(没有边也没有点) ∣ E ∣ − a n s ∣ V ∣ = 0 |E|-ans|V|=0 EansV=0,所以对这个题来说我们求的方案应该是 ∣ E ∣ − a n s ∣ V ∣ = e p s |E|-ans|V|=eps EansV=eps的。
精度搞大点可以无特判通过。

A C   C o d e \rm AC\ Code AC Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cctype>
#define maxn 105
#define maxm 3005
#define inf 1e7
#define Clear(a,b) memset(a,b,sizeof a)
#define Copy(a,b) memcpy(a,b,sizeof a)
using namespace std;

int n,m,x[maxm],y[maxm],in[maxn];
int info[maxn],buf[maxn],Prev[maxm],to[maxm],cnt_e;;
double cap[maxm];
void Node(int u,int v,double c){ Prev[++cnt_e]=info[u],info[u]=cnt_e,to[cnt_e]=v,cap[cnt_e]=c; }
void Line(int u,int v,double c,double d=0){ Node(u,v,c),Node(v,u,d); }
int S,T,h[maxn],g[maxn];

double aug(int u,double mx){
	if(u == T) return mx;
	double st = mx , inc;
	for(int &i=info[u],v;i;i=Prev[i])
		if(cap[i]>0 && h[v=to[i]]+1==h[u]){
			inc = aug(v,min(st,cap[i]));
			st -= inc , cap[i] -= inc , cap[i^1] += inc;
			if(st <= 0){ info[u]=buf[u]; return mx-st;}
		}
	if(!--g[h[u]]) h[S]=T+1;
	++g[++h[u]];info[u]=buf[u];
	return mx - st;
}

bool vis[maxn];
vector<int>ans;
void dfs(int u){
	vis[u]=1;if(u<=n) ans.push_back(u);
	for(int i=info[u];i;i=Prev[i]) if(!vis[to[i]] && cap[i]>0) dfs(to[i]);
}

int main(){
	scanf("%d%d",&n,&m);S=n+1,T=n+2;
	for(int i=1;i<=m;i++) scanf("%d%d",&x[i],&y[i]),in[x[i]]++,in[y[i]]++;
	double L=0,R=m,mid;
	for(int stp=0;stp<=100;stp++){
		mid = (L+R) * 0.5;
		Clear(info,0),cnt_e=1;
		for(int i=1;i<=n;i++) Line(S,i,m),Line(i,T,m+mid-in[i]/2.0);
		for(int i=1;i<=m;i++) Line(x[i],y[i],0.5,0.5);
		Clear(h,0),Clear(g,0),Copy(buf,info);
		double stm = -m*n;
		for(;h[S]<=T;) stm+=aug(S,inf);
		if(stm < -1e-5) L = mid;
		else R = mid;
	}
	Clear(info,0),cnt_e=1;
	for(int i=1;i<=n;i++) Line(S,i,m),Line(i,T,m+L-in[i]/2.0);
	for(int i=1;i<=m;i++) Line(x[i],y[i],0.5,0.5);
	Clear(h,0),Clear(g,0),Copy(buf,info);
	double stm = -m*n;
	for(;h[S]<=T;) stm+=aug(S,inf);
	dfs(S);
	sort(ans.begin(),ans.end());
	if(ans.size() == 0) ans.push_back(1);
	printf("%d\n",ans.size());
	for(int i=0;i<ans.size();i++) printf("%d\n",ans[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值