刚刷的这道题难度不大,下面就和大家分享一下经验吧!
题目如下:
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
题意分析:
给定一个按升序排好的数组,请将它转成一个高度平衡的二分搜索树。
方法一(二分搜索法)
由于二分搜索树满足左节点值<根节点值<右节点值的特性并且对二分搜索树进行中序遍历得到的就是一个升序数组,所以升序数组的中间点应为根节点值,而中间点的左有序数组对于根节点的左子树,右有序数组对于根节点的右子树。然后分别在左右有序数组中找出其中间点作为左右子树各自的根节点,依次二分下去,直至最终无法二分为止。
解题代码如下:
class Solution{
public:
TreeNode* sortedArrayToBST(vector<int>& nums){
return sortedArrayToBST_son(nums, 0, (int)nums.size()-1);
}
TreeNode* sortedArrayToBST_son(vector<int>& nums, int l, int r){
if(l > r) return NULL;
int mid = l + (r-l)/2;
TreeNode* curNode = new TreeNode(nums[mid]);
curNode->left = sortedArrayToBST_son(nums, l, mid-1);
curNode->right = sortedArrayToBST_son(nums, mid+1, r);
return curNode;
}
};
提交后的结果如下:
方法二(优化方法一)
该方法中直接使用一个递归函数,由于被调函数的参数是一个数组,所以首先需要把输入数组的中间数字取出来,并将其两端的子数组重构成一个新的数组,然后分别进行递归调用,最后将递归调用中创建cur节点连到前面创建的结点上。
解题代码如下:
class Solution{
public:
TreeNode* sortedArrayToBST(vector<int>& nums){
if(nums.size()==0) return NULL;
int mid = nums.size()/2;
TreeNode* curNode = new TreeNode(nums[mid]);
vector<int> l_nums(nums.begin(), nums.begin()+mid);
vector<int> r_nums(nums.begin()+mid+1, nums.end());
curNode->left = sortedArrayToBST(l_nums);
curNode->right = sortedArrayToBST(r_nums);
return curNode;
}
};
提交后的结果如下:
日积月累,与君共进,增增小结,未完待续。