-
求矩阵行列式的值 —— det(A)
-
求矩阵的秩 —— rank(A)
例:求3~20阶魔方阵的秩
(1)奇数阶魔方阵秩为n(满秩矩阵)
(2)一重偶数阶魔方阵秩为n/2+2(此时,n是2的倍数,但非4的倍数)
(3)双重偶数阶魔方阵秩均为3(阶数是4的倍数) -
求矩阵的迹 —— trace(A)
矩阵的迹=矩阵对角线元素之和=矩阵特征值之和
-
求向量的范数
(1)向量1-范数 norm(V,1) :向量元素的绝对值之和
(2)向量2-范数 norm(V) 或 norm(V,2) :向量元素平方和的平方根
(3)向量∞-范数 norm(V,inf) :所有向量元素绝对值中的最大值 -
矩阵的范数
(1)矩阵A的1-范数 norm(V,1) :矩阵列元素的绝对值之和的最大值
(2)矩阵A的2-范数 norm(V) 或 norm(V,2) :矩阵A*A的最大特征值的平方根
(3)矩阵A的∞-范数 norm(V,inf) :所有向量行元素绝对值之和的最大值
-
求矩阵的条件数
矩阵A的条件数=A的范数与A的逆矩阵的范数的乘积
条件数越接近于1,矩阵性能越好
(1)A的1-范数下的条件数 cond(A,1)
(2)A的2-范数下的条件数 cond(A,2) 或 cond(A)
(3)A的∞-范数下的条件数 cond(A,inf)
20200515 MATLAB笔记(四)
最新推荐文章于 2022-04-19 10:54:03 发布