20200511 MATLAB笔记(三)

一、特殊矩阵

  1. 通用特殊矩阵
    (1)zeros函数:生成零矩阵
    zeros(n):生成n阶零方阵
    在这里插入图片描述

zreos(m,n):生成mxn阶零矩阵
在这里插入图片描述
zeros(size(A)):生成和矩阵A等大的零矩阵
在这里插入图片描述
(2)ones函数:生成1矩阵
(3)eye函数:生成对角线为1的矩阵
(4)rand函数:生成(0,1)开区间均匀分布的随机数x
注意:rand函数生成的是一个n阶方阵
在这里插入图片描述
(5)randn函数:生成均值为0、方差为1的标准正态分布随机数x
在这里插入图片描述
(6)fix(a+(b-a+1)*x):生成[a,b]区间上均匀分布的随机数
在这里插入图片描述
(7)μ+σx:生成均值为μ,方差为σ^2的随机数
在这里插入图片描述
2. 专业特殊矩阵
(1)魔方矩阵 Magic Square
n阶魔方阵由n^2个整数组成
且每行每列和主、副对角线上的元素之和都=(n+n^3)/2
magic(n):生成n阶魔方阵
在这里插入图片描述
(2)范德蒙矩阵 Vandermonde
对向量V=[V1,V2,…,Vn],范德蒙矩阵的一般形式为:
在这里插入图片描述
vander(V):生成以向量V为基础的范德蒙矩阵
在这里插入图片描述
(3)希尔伯特矩阵 Hilbert
n阶希尔伯特矩阵的一般形式为:
在这里插入图片描述
hilb(n):生成n阶希尔伯特矩阵
在这里插入图片描述
(4)伴随矩阵
在这里插入图片描述
compan(n):生成以向量p为基础的伴随矩阵
其中,p是一个多项式的系数向量,高次幂系数在前,低次幂系数在后
在这里插入图片描述
(5)帕斯卡矩阵 Pascal
将杨辉三角形依次填写在矩阵的左侧对角线上
提取左侧的n行n列元素作为n阶帕斯卡矩阵
在这里插入图片描述
pascal(n):生成n阶帕斯卡尔矩阵
在这里插入图片描述

二、矩阵变换

  1. 对角阵
    (1)提取矩阵对角线的元素
    diag(A):提取矩阵A主对角线上的元素,生成列向量
    在这里插入图片描述
    diag(A,k):提取矩阵A第k条对角线上的元素,生成列向量
    在这里插入图片描述
    在这里插入图片描述
    (2)构造对角矩阵
    diag(V):以向量V为主对角线元素,生成对角矩阵
    在这里插入图片描述
    diag(V,k):以向量V为第k条对角线元素,生成对角矩阵
    在这里插入图片描述
  2. 三角阵
    (1)上三角阵
    triu(A):提取矩阵A主对角线及以上的元素
    在这里插入图片描述
    triu(A,k):提取矩阵A第k条对角线及以上的元素
    在这里插入图片描述
    (2)下三角矩阵
    tril(A):提取矩阵A主对角线及以下的元素
    tril(A,k):提取矩阵A第k条对角线及以下的元素
  3. 矩阵的转置
    (1)转置运算符:(.’)
    在这里插入图片描述
    (2)共轭转置运算符:(’)
  4. 矩阵的旋转
    rot90(A,k):将矩阵A逆时针旋转90°的k倍,当k=1时可以省略
    在这里插入图片描述
  5. 矩阵的翻转
    (1)fliplr(A):对矩阵A实施左右翻转
    在这里插入图片描述
    (2)flipud(A):对矩阵A实施上下翻转
    在这里插入图片描述
  6. 矩阵求逆
    inv(A):求矩阵A的逆矩阵

【例题练习】

在这里插入图片描述在这里插入图片描述
若将行换为列:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值