tensorflow-gpu安装了很多遍,给大家推荐一个没有坑的Ubuntu tensorflow-gpu 安装方法,亲测无坑:
主要参考文章:https://blog.csdn.net/u014670893/article/details/82467384
更改驱动:
将ubuntu驱动更改为NVIDIA版本驱动
安装完成后最好重启下。
检查驱动是否安装成功:
~$:nvidia-smi
安装CUDA Toolkit 9.0
下载地址:
https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1704&target_type=runfilelocal
直接按照下图版本下载17.04的版本,18.04可以使用
下载完成后,终端输入以下代码安装:
~$:sudo chmod +x cuda_9.0.176_384.81_linux.run
~$:./cuda_9.0.176_384.81_linux.run --override
根据提示安装即可,
installing with an unsupported configuration?时选择yes
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?为了稳定最好选择no
样例可以不安装。
安装CUDNN 7.0
地址:https://developer.nvidia.com/rdp/cudnn-archive
CD到下载的文件夹中
# 解压
~$:tar -zxvf cudnn-9.0-linux-x64-v7.tgz
# 复制相应文件
~$:sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/
~$:sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include/
# 所有用户可读
~$:sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
libcupti
sudo apt-get install libcupti-dev
配置
编辑~/.bashrc
~$:gedit ~/.bashrc
在~/.bashrc中加入
export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
安装tensorflow-gpu
也可以使用pip3
~$:pip install tensorflow-gpu==1.14.0
网络不好可以多试几次,安装成功后,进入测试:
~$:python3
import tensorflow as tf
没有报错,则安装成功。