【解题报告】《LeetCode零基础指南》(第二讲) 函数 - Java

在这里插入图片描述

零、相关知识

1.快速幂

  • 我一开始听到快速幂,不知道这是做什么用的,就去先自己了解了一下,也在这里简单做一个记录,有错漏的地方欢迎指正。
  • 快速幂计算: a b   m o d   c a^b\ mod\ c ab mod c
  • 在很多地方都能使用到快速幂,比如说RSA加密算法,需要用到: ( 明 文 ) e   m o d   n   和   ( 密 文 ) d   m o d   n (明文)^e\ mod\ n\ 和\ (密文)^d\ mod\ n ()e mod n  ()d mod n,下面通过一个例子来引入快速幂
  • 例子:55 mod 7
    (1)简单的,可以直接 5×5×5×5×5 mod 7,这里的4步幂次计算时间复杂度近似为 O ( N ) O_{(N)} O(N)。这里幂次比较小还好,但是一般幂次都会比较大,这样耗时就会比较长。
    (2)如果通过二分法做一个降幂的优化,如下图所示:
    在这里插入图片描述
    (3)将 5 5 5^5 55 的幂次除以2,因为指数是奇数,所以还需要乘 5 1 5^1 51 ,得到 5 2 × 5 2 × 5 1 5^2×5^2×5^1 52×52×51。继续降幂, 5 2 5^2 52 又可以分为 5 1 × 5 1 5^1×5^1 51×51,最后得到的就是: ( 5 2 ) 2 × 5 (5^2)^2×5 (52)2×5,这里的运算总共就是3步,相较于上一种方法运算步骤要少了。
    (4)虽然在这里看起来还是差不多,但是当幂次大了之后,两者的区别就会显现出来。
  • 例如:计算 5 16 5^{16} 516
    (1)如果是直接乘,就需要乘(16 - 1)=15次;
    (2)如果用二分快速幂,就是 ( ( ( 5 2 ) 2 ) 2 ) 2 (((5^2)^2)^2)^2 (((52)2)2)2总共4步运算时间复杂度近似为 O ( l o g 2 N ) O_{(log_2N)} O(log2N),区别就很显而易见了。
  • 最后总结一下二分快速幂,需要分为三种情况来计算:
    在这里插入图片描述

一、371. 两整数之和

1.题目

371. 两整数之和

给你两个整数 a 和 b ,不使用 运算符 + 和 - ​​​​​​​,计算并返回两整数之和。

2.分析

题目说不能使用加减号,第一时间想到的是位运算,要通过位运算来实现,首先要了解基本的位运算符:

  1. & 按位与:都为1才是1,有0为0
  2. | 按位或:有1为1,都为0才是0
  3. ^ 按位异或:相同为0,不同为1
  4. << 左移:高位舍弃,低位补0
  5. >> 右移:高位补0,低位舍弃

了解了以上位运算符,看以下例子:
例子:2 + 3
在二进制运算中,可以表示为:
010 + 011 101 \begin{array}{r} 0 1 0\\ +0 1 1\\ \hline 1 0 1 \end{array} 010+011101

这个位运算的过程,可以拆分成几个步骤:

  1. 找出需要进位的位置
  2. 把要进位的位置左移一位,得到新的二进制数
  3. 找出不需要进位的位置
  4. 把左移后的新二进制数与不需要进位的位合并

现在把各个步骤变成代码:

  1. 需要进位的位置,必定都为1,所以 a & b 得到的就是需要进位的位数
    a & b = 2 & 3:
    010 011 010 ( 得 出 需 要 进 位 的 是 第 2 位 ) \begin{array}{r} 010\\ 011\\ \hline 0 1 0 \end{array}(得出需要进位的是第2位) 010011010(2)
  2. 把要进位的位置左移一位,得到新的二进制数
    010 < < 1 得 到 : 100 0 1 0 << 1得到: 1 0 0 010<<1100
  3. 不需要进位的位置,即都为0和都为1的位置计算后要得0,有且只有一个1的位置计算后得1,我们会发现这就是异或运算
    a ^ b = 2 ^ 3:
    010 011 001 ( 得 出 不 需 要 进 位 的 是 第 1 位 ) \begin{array}{r} 010\\ 011\\ \hline 0 0 1 \end{array}(得出不需要进位的是第1位) 010011001(1)
  4. 最后把左移后的数和不需要进位的数合起来就是结果,也就是a | b
    100 001 101 ( 得 出 结 果 : 2 + 3 = 5 ) \begin{array}{r} 1 0 0\\ 0 0 1\\ \hline 1 0 1 \end{array}(得出结果:2 + 3 = 5) 100001101(2+3=5)
  5. 特殊情况:有可能经过左移后得到的数与异或得到的数按位或(|)时,还是会出现进位,所以需要一个循环的判断,直到按位与(&)为0,再进行按位或运算返回结果。

3.代码

class Solution {
    public int getSum(int a, int b) {
        int n = a,m = b;
        while ((n & m) != 0){
            n = (a & b) << 1;
            m = a ^ b;
            a = n;
            b = m;
        }
        return n | m;
    }
}

在这里插入图片描述

二、面试题 17.01.不用加号的加法

1.题目

面试题 17.01.不用加号的加法

设计一个函数把两个数字相加。不得使用 + 或者其他算术运算符。

2.分析

跟第一题是一样的,也是位运算,具体思路可以往上翻一下哈。

3.代码

class Solution {
    public int add(int a, int b) {
        int n = a,m = b;
        while ((n & m) != 0){
            n = (a & b) << 1;
            m = a ^ b;
            a = n;
            b = m;
        }
        return n | m;
    }
}

在这里插入图片描述

三、剑指 Offer 65. 不用加减乘除做加法

1.题目

剑指 Offer 65. 不用加减乘除做加法

写一个函数,求两个整数之和,要求在函数体内不得使用 “+”、“-”、“*”、“/” 四则运算符号。

2.分析

额…还是跟第一题一样的思路。。

3.代码

class Solution {
    public int add(int a, int b) {
        int n = a,m = b;
        while ((n & m) != 0){
            n = (a & b) << 1;
            m = a ^ b;
            a = n;
            b = m;
        }
        return n | m;
    }
}

在这里插入图片描述

四、面试题 08.05. 递归乘法

1.题目

面试题 08.05. 递归乘法

递归乘法。 写一个递归函数,不使用 * 运算符, 实现两个正整数的相乘。可以使用加号、减号、位移,但要吝啬一些。

2.分析

暴力的写法,一个个加。。位运算的写法还没想到额。。。

3.代码

class Solution {
    public int multiply(int A, int B) {
        int i = 1,res = 0;
        while (i <= B){
            res = res + A;
            i++;
        }
        return res;
    }
}

在这里插入图片描述

五、29. 两数相除

1.题目

29. 两数相除

给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend 除以除数 divisor 得到的商。
整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2

提示:
1.被除数和除数均为 32 位有符号整数。
2.除数不为 0。
3.假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。

2.分析

判断溢出的情况,直接除。

3.代码

class Solution {
    public int divide(int dividend, int divisor) {
        if (divisor == -1){
            if (dividend == -2147483648){
                //溢出
                return 2147483647; 
            }
        }
        return dividend / divisor;
    }
}

在这里插入图片描述

六、50. Pow(x, n)

1.题目

50. Pow(x, n)

实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。

提示:
-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104

2.分析

这里用到了二分快速幂。具体介绍可以在文章开头导读了解一下哈。
在这里插入图片描述

3.代码

class Solution {
    public double myPow(double x, int n) {
        //n为负数不能写 1 / binaryQuickPow(x,-n),因为当n为-2147483648时,会溢出
        return n > 0 ? binaryQuickPow(x,n) : 1 / binaryQuickPow(x,n);
    }

    /**
     * 二分快速幂
     */
    private double binaryQuickPow(double x, int n) {
        //终止递归的条件
        if (n == 1 || n == -1){
            return x;
        }
        if (n == 0){
            return 1;
        }
        double t = binaryQuickPow(x, n / 2);
        return n % 2 == 0 ? t * t : t * t * x;
    }
}

在这里插入图片描述

七、69. Sqrt(x)

1.题目

69. Sqrt(x)

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

提示:
0 <= x <= 231 - 1

2.分析

二分查找,因为 x x x 的算术平方根 n n n 必定满足 n 2 ≤ x n^2 ≤ x n2x,所以找满足 n 2 > x n^2 > x n2x 的最小 n n n,最后返回 n − 1 n - 1 n1

3.代码

class Solution {
    public int mySqrt(int x) {
        if (x == 0 || x == 1){
            return x;
        }
        int l = 0,r = x;
        int mid = 0;
        while (r - l > 1){
            mid = l + (r - l) / 2;
            if ((long)mid * mid <= x){
                l = mid;
            } else {
                r = mid;
            }
        }
        return r - 1;
    }
}

在这里插入图片描述

八、面试题 16.07. 最大数值

1.题目

面试题 16.07. 最大数值

编写一个方法,找出两个数字a和b中最大的那一个。不得使用if-else或其他比较运算符。

2.分析

三目运算符: a > b ? a : b a > b ? a : b a>b?a:b

3.代码

class Solution {
    public int maximum(int a, int b) {
        return a > b ? a : b;
    }
}

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值