python ERA5 画水汽通量散度图地图:风速风向矢量图、叠加等高线、色彩分级、添加shp文件、添加位置点及备注

本文介绍了如何使用Python和相关库如xarray、numpy、matplotlib和geopandas,结合ERA5气象数据,为写论文绘制风速箭头和水汽通量散度图。代码示例展示了如何处理数据、计算水汽通量并自定义国界,适用于科学发表需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动机

有个同事吧,写论文,让我帮忙出个图,就写了个代码,然后我的博客好久没更新了,就顺便贴上来了!
很多人感兴趣风速的箭头怎样画,可能这种图使用 NCL 非常容易,很多没用过代码的小朋友,就有点犯怵,怕 python 画起来很困难。但是不然,看完我的代码,就会发现很简单,并且也可以批量,同时还能自定义国界等shp文件,这对于发sci等国际论文很重要,因为有时候内置的国界是有问题的。

数据

本次博客使用的数据为 ERA5 hourly data on pressure levels from 1940 to present数据,数据的下载方式及注册账号,我在前面的博客中都写过,详细可参考以下两篇博客:

http://t.csdnimg.cn/657dg
http://t.csdnimg.cn/YDELh
以下为我们数据介绍界面和需要下载的变量:
数据介绍地址:https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
在这里插入图片描述

数据选择界面

在这里插入图片描述

代码

废话不多说,直接上代码。

导入包

import xarray as xr
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import geopandas as gpd
# 设置全局字体为新罗马
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Times New Roman']
# plt.rcParams['font.serif'] = ['SimSun']
# 设置全局字体权重为normal
plt.rcParams['font.weight'] = 'normal'

# 设置全局字体大小
matplotlib.rcParams['font.size'] = 19  # 设置全局字体大小为12

画水汽通量散度图

# 加载shapefile
gdf = gpd.read_file(r'./shp/Pronvience.shp')

# 使用geopandas读取地理数据,这里我们手动创建一个GeoDataFrame
gdf_point = gpd.GeoDataFrame({
    'City': ['Mingfeng Station', 'Kalasai Station'],
    'Latitude': [37.5,37],
    'Longitude': [80,81]
}, geometry=gpd.points_from_xy([80,81], [37.5,37]))


# 载入数据
data_path = r'./20170731_case.nc'  # 替换为您的文件路径
ds = xr.open_dataset(data_path)

time = '2017-07-30T22:00:00'

# level_hPa = 700

# for level_hPa in [200,500,700,850]:
for level_hPa in [600]:
    # 选择特定时间和气压层
    ds_selected = ds.sel(time= time, level=level_hPa)  # 示例:2022年1月1日0时,850hPa
    
    # 获取数据变量
    u = ds_selected['u']  # 东西向风速
    v = ds_selected['v']  # 南北向风速
    q = ds_selected['q']  # 比湿
    
    # 获取经度和纬度,假设这些是坐标维度
    longitude = u.longitude
    latitude = u.latitude
    
    # 计算水汽通量
    qu = q * u  # 东西向水汽通量
    qv = q * v  # 南北向水汽通量
    
    
    # 计算水汽通量散度 单位为
    div_q = (qu.differentiate('longitude') + qv.differentiate('latitude'))* 10
    
    # 打印结果
    # print(div_q)
    
    # 创建图形和轴对象
    fig, ax = plt.subplots(figsize=(6, 6),dpi=500)  # 图形尺寸为10x6英寸
    
    # 可视化散度结果
    contour = div_q.plot(add_colorbar=False, cmap="RdBu_r", vmin=-1, vmax=1)  # 使用黑色线条绘制20个等级的等高线
    #
    # 在ax上绘制等高线图
    div_q.plot.contour(levels=25, colors='black',linewidths=0.6)
    # 添加颜色条
    fig.colorbar(contour, ax=ax, label='Water Vapor Flux Divergence (g/cm²/s)')
    
    # 使用quiver函数需要确保数据的间隔,这里我们每隔5个点取样
    Q = ax.quiver(longitude[::5], latitude[::5], u[::5, ::5], v[::5, ::5], scale=300,color="red")
    
    # 绘制shapefile
    gdf.plot(ax=ax, color='none', edgecolor='green',linewidths=0.7)  # 无填充,黑色边界
    
    # gdf_point.plot(ax=ax, color='red')  # 标记纽约的位置
    
    # 绘制点
    ax.scatter(gdf_point['Longitude'], gdf_point['Latitude'], color='red', s=100) 
    
    # 标注城市名称
    for x, y, city in zip(gdf_point['Longitude'], gdf_point['Latitude'], gdf_point['City']):
        ax.text(x, y, ' ' + city, verticalalignment='center', fontsize=15)
    

    
    # 设置经纬度范围
    ax.set_xlim(75, 90)
    ax.set_ylim(30, 45)
    
    ax.set_xlabel('Longitude')
    ax.set_ylabel('Latitude')
    ax.set_title('')  # 清除标题
    
    # 添加标题在图片正下方
    # fig.suptitle('{}hPa {}'.format( level_hPa,time.replace("T"," ") ), y=-0.01,va='bottom')
    
    # 调整布局以避免重叠和裁剪
    fig.tight_layout()
    
    plt.savefig("./{}hPa {}.jpg".format( level_hPa,time.replace(":","") ), dpi=500)
    plt.show()

水汽通量图

# 加载shapefile
gdf = gpd.read_file(r'./shp/Pronvience.shp')

# 载入数据
data_path = r'./20170731_case.nc'  # 替换为您的文件路径
ds = xr.open_dataset(data_path)

time = '2017-07-30T22:00:00'
for level_hPa in [200,500,600,700,850]:
    # 选择特定时间和气压层
    ds_selected = ds.sel(time= time, level=level_hPa)  # 示例:2022年1月1日0时,850hPa
    
    # 获取数据变量
    u = ds_selected['u']  # 东西向风速
    v = ds_selected['v']  # 南北向风速
    q = ds_selected['q']  # 比湿
    
    # 获取经度和纬度,假设这些是坐标维度
    longitude = u.longitude
    latitude = u.latitude
    
    # 计算水汽通量
    qu = q * u * 100  # 东西向水汽通量
    qv = q * v * 100 # 南北向水汽通量
    
    wvf = np.sqrt(qu**2 + qv**2)
    
    # 计算水汽通量散度 单位为
    # div_q = (qu.differentiate('longitude') + qv.differentiate('latitude'))* 10
    
    # 打印结果
    # print(div_q)
    
    # 创建图形和轴对象
    fig, ax = plt.subplots(figsize=(6, 6),dpi=400)  # 图形尺寸为10x6英寸
    
    # 可视化散度结果
    contour = wvf.plot(add_colorbar=False, cmap="RdBu_r", vmin=0, vmax=10)  # 使用黑色线条绘制20个等级的等高线
    #
    # 在ax上绘制等高线图
    wvf.plot.contour(levels=25, colors='black',linewidths=0.6)
    # 添加颜色条
    fig.colorbar(contour, ax=ax, label='Water Vapor Flux(g/cm/s)')
    
    # 使用quiver函数需要确保数据的间隔,这里我们每隔5个点取样
    Q = ax.quiver(longitude[::5], latitude[::5], u[::5, ::5], v[::5, ::5], scale=300,color="red")
    
    # 绘制shapefile
    gdf.plot(ax=ax, color='none', edgecolor='green',linewidths=0.7)  # 无填充,黑色边界
    
    # 设置经纬度范围
    ax.set_xlim(75, 90)
    ax.set_ylim(30, 45)
    
    ax.set_xlabel('Longitude')
    ax.set_ylabel('Latitude')
    ax.set_title('')  # 清除标题
    
    # 添加标题在图片正下方
    # fig.suptitle('{}hPa {}'.format( level_hPa,time.replace("T"," ") ), y=-0.01,va='bottom')
    
    # 调整布局以避免重叠和裁剪
    fig.tight_layout()
    
    plt.savefig("./WVF_{}hPa {}.jpg".format( level_hPa,time.replace(":","") ), dpi=500)
    plt.show()

结果图

在这里插入图片描述

<think>好的,我现在需要帮助用户解决如何使用Python绘制ERA5水汽通量数据可视化的问题。用户提到了使用matplotlib或basemap等常用库,并希望得到示例代码。首先,我需要回忆ERA5数据的基本结构和处理步骤。 ERA5数据通常是NetCDF格式,包含经纬、时间、以及气象变量如比湿(q)、纬向风(u)、经向风(v)等。水汽通量的计算需要这些变量,公式是水汽通量 = (u*q + v*q) / g,其中g是重力加速。可能需要用到MetPy库来处理单位转换,比如将帕斯卡转换为百帕。 接下来,用户需要可视化,可能会用到matplotlib和Basemap或者Cartopy。考虑到Basemap已经逐步被Cartopy取代,但用户示例中提到了Basemap,所以可能需要提供两种方法的代码,或者选择更推荐的Cartopy。 然后,数据处理的步骤包括:读取NetCDF文件,提取所需的变量,计算水汽通量,进行单位转换,然后绘。需要注意坐标的处理,比如经是否从0到360,可能需要转换为-180到180,这可以通过NetCDF4库处理。 在绘部分,需要设置地图投影、添加海岸线、国界等地理元素,设置colorbar,调整刻标签。比如,使用Basemap的圆柱投影,设置经纬范围,添加等值线或填色。 还要考虑代码的兼容性和库的安装情况,比如是否安装了xarray、netCDF4、metpy等。可能需要提醒用户安装必要的库。 最后,生成相关问题,比如数据处理的其他方法、单位转换的注意事项、Cartopy的替代方案等,以帮助用户深入理解。 现在需要检查步骤是否正确,确保公式正确,单位转换无误,绘代码没有错误,并引用相关引用。例如,MetPy的constants用于获取重力加速,引用用户提供的引用[1]中的metpy.constants。同时,引用[2]提到ChatGPT在大气科学的应用,可能可以关联到数据处理部分,但可能不直接相关,需谨慎使用引用。</think>以下是使用Python绘制ERA5水汽通量的完整解决方案,结合气象数据处理库和可视化工具实现: ### 数据准备与处理步骤 1. **数据读取** 使用`xarray`读取ERA5的NetCDF格式数据,需包含以下变量: - 比湿 $q$ (kg/kg) - 纬向风 $u$ (m/s) - 经向风 $v$ (m/s) - 地表气压 $sp$ (Pa) 2. **水汽通量计算** 水汽通量公式为: $$Q = \frac{u \cdot q + v \cdot q}{g}$$ 其中 $g$ 为重力加速,通过`metpy.constants`获取[^1] 3. **单位转换** 将气压单位从Pa转换为hPa: $$sp_{hPa} = \frac{sp}{100}$$ ### 可视化代码实现 ```python import xarray as xr import metpy.constants as constants import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap # 读取数据 ds = xr.open_dataset('era5_data.nc') q = ds['q'].isel(time=0, level=0) u = ds['u'].isel(time=0, level=0) v = ds['v'].isel(time=0, level=0) sp = ds['sp'].isel(time=0)/100 # 转换为hPa # 计算水汽通量 g = constants.earth_gravity Q = (u * q + v * q) / g # 创建地图投影 fig = plt.figure(figsize=(12,8)) m = Basemap(projection='cyl', resolution='l', llcrnrlon=70, llcrnrlat=15, urcrnrlon=140, urcrnrlat=55) # 绘制地理要素 m.drawcoastlines() m.drawcountries() m.drawparallels(range(15,56,10), labels=[1,0,0,0]) m.drawmeridians(range(70,141,15), labels=[0,0,0,1]) # 绘制水汽通量 x, y = m(ds.longitude.values, ds.latitude.values) cs = m.contourf(x, y, Q, levels=20, cmap='Blues') cbar = m.colorbar(cs, location='bottom', pad="10%") cbar.set_label('Water Vapor Flux (kg/(m·s))') plt.title('ERA5 Water Vapor Flux') plt.show() ``` ### 关键技术说明 1. **坐标处理** 当经范围为0-360时,需转换为-180-180: ```python ds = ds.assign_coords(longitude=(((ds.longitude + 180) % 360) - 180)) ``` 2. **Cartopy替代方案** Basemap的现代替代方案: ```python import cartopy.crs as ccrs ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值