计算机视觉——加权最小二乘(WLS)滤波器

本文介绍了加权最小二乘(WLS)滤波器在图像处理中的应用,特别是在人脸试妆的Digital Face Makeup by Example论文中的使用。文章重点解读了算法的实现代码,通过数学模型展示如何将光照层分解为结构层和细节层,同时提供了Matlab代码示例来计算Laplacian矩阵,解释了平滑权重在实际编程中的处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation
Zeev Farbman, Raanan Fattal, Dani Lischinski, Richard Szeliski
Acm Transactions on Graphics , 2008

在关于人脸试妆的论文Digital Face Makeup by Example中,采用了本文提到的weighted least square(WLS)算法把光照层分解为结构层和细节层。这里不着重介绍本文的算法,重点解读此算法的实现代码。

给定一幅图片g(大小为N*M),想要得到新的图片u,并且一方面满足和g类似,一方面又尽可能的平滑。这个问题的数学模型:

minup((upgp)2+λ(ax,p(g)(ux)2p+ay,p(uy)2p)),(1)

其中 p 表示像素的位置, ax ay 控制着不同位置上的平滑程度。
表达式(
### 加权最小二乘 WLS 融合的实现方法 加权最小二乘(Weighted Least Squares, WLS)是一种优化技术,在多传感器数据融合中广泛应用。其核心在于通过引入权重矩阵来提高估计精度,使得不同测量值的重要性得以体现。 #### 权重计算 在WLS框架下,权重通常由各传感器观测误差的协方差矩阵决定。对于给定的一组观测向量 \( \mathbf{y}_i \),对应的预测模型可以表示为: \[ \mathbf{y}_i = H_i\mathbf{x} + v_i \] 其中,\(H_i\) 是观测矩阵,\(v_i\) 表示零均值白噪声[^1]。为了获得最优解,定义代价函数如下: \[ J(\mathbf{x})=\sum_{i=1}^{N}\left[\mathbf{r}_{i}^{T} R^{-1}_{i} \mathbf{r}_{i}\right]=\sum_{i=1}^{N}(H_i\mathbf{x}-\mathbf{z}_i)^TR^{-1}_i(H_i\mathbf{x}-\mathbf{z}_i) \] 这里 \(R_i\) 代表第 i 组观测数据的协方差矩阵,而 \(\mathbf{r}_i=(H_i\mathbf{x}-\mathbf{z}_i)\) 则是残差向量。求解上述目标函数即得到参数的最佳估值。 ```python import numpy as np def weighted_least_squares(y, H, R): """ 计算加权最小二乘解 参数: y : 观测值数组 (m,) H : 观测矩阵 (m,n) R : 协方差矩阵 (m,m) 返回: x_hat : 最优状态估计 (n,) """ # 计算权重矩阵 W = np.linalg.inv(R) # 解决线性方程组 HTWHx = HTWy A = H.T @ W @ H b = H.T @ W @ y # 使用numpy linalg solve 函数获取最优化结果 x_hat = np.linalg.solve(A,b) return x_hat ``` ### 应用场景 WLS广泛应用于多个领域,特别是在需要精确位置估算的情况下表现优异。具体应用包括但不限于以下几个方面: - **卫星导航系统**:利用来自多个GPS卫星的距离读数来进行更精准的位置确定。 - **无线传感网络中的节点定位**:当存在障碍物或其他干扰因素影响某些链路质量时,可以通过赋予较低信噪比的数据较小权重来改善整体性能。 - **自动驾驶汽车感知模块**:结合激光雷达、摄像头等多种类型的传感器输入,提供更加可靠的目标检测与跟踪服务[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值