计算机视觉——加权最小二乘(WLS)滤波器

本文介绍了加权最小二乘(WLS)滤波器在图像处理中的应用,特别是在人脸试妆的Digital Face Makeup by Example论文中的使用。文章重点解读了算法的实现代码,通过数学模型展示如何将光照层分解为结构层和细节层,同时提供了Matlab代码示例来计算Laplacian矩阵,解释了平滑权重在实际编程中的处理方式。
摘要由CSDN通过智能技术生成

Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation
Zeev Farbman, Raanan Fattal, Dani Lischinski, Richard Szeliski
Acm Transactions on Graphics , 2008

在关于人脸试妆的论文Digital Face Makeup by Example中,采用了本文提到的weighted least square(WLS)算法把光照层分解为结构层和细节层。这里不着重介绍本文的算法,重点解读此算法的实现代码。

给定一幅图片g(大小为N*M),想要得到新的图片u,并且一方面满足和g类似,一方面又尽可能的平滑。这个问题的数学模型:

minup((upgp)2+λ(ax,p(g)(ux)2p+ay,p(uy)2p)),(1)

其中 p 表示像素的位置, ax ay 控制着不同位置上的平滑程度。
表达式(
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值