辛普森积分入门讲解

辛普森积分

引用部分

定义

辛普森积分法就是在积分区间[a,b]上去找三个点a、b和m=(a+b)/2,计算其原函数的在此处的值,然后用抛物线来拟合原函数。

正文

  • Simpson积分公式

用途:来求一个函数的积分的近似值,用于面积计算等精度要求不是特别苛刻的地方。

其实它就是用一个二次函数曲线不断拟合逼近原函数,然后求得原函数的近似值。


  • 公式说明:

前置: g ( x ) g(x) g(x)为一个关于 x x x的二次函数(抛物线),其中 g ( x ) = A × x 2 + B × x + C g(x)=A\times x^2+B\times x+C g(x)=A×x2+B×x+C,对于求定积分 ∫ 0 x g ( x ) d x \int_0^xg(x)dx 0xg(x)dx,通过求积得其等于 A × x 3 3 + B × x 2 2 + C × x + D \frac{A\times x^3}{3}+\frac{B\times x^2}{2}+C\times x+D 3A×x3+2B×x2+C×x+D 其中 D D D为常数,可以看做 0 0 0。令 W ( x ) = ∫ 0 x g ( x ) d x W(x)=\int_0^xg(x)dx W(x)=0xg(x)dx,所以对于求一段定积分则有 ∫ a b g ( x ) = W ( b ) − W ( a ) \int_a^bg(x)=W(b)-W(a) abg(x)=W(b)W(a)


在平面直角坐标系里,由 ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) (x_1,y_1),(x_2,y_2),(x_3,y_3) (x1,y1),(x2,y2),(x3,y3)(其中 x 3 = x 1 + x 2 2 x_3=\frac{x_1+x_2}{2} x3=2x1+x2)确定的抛物线 f ( x ) f(x) f(x)在区间[x1,x2]的定积分为:
∫ x 1 x 2 f ( x ) d x = 1 6 × ( x 2 − x 1 ) × ( y 1 + y 2 + 4 × y 3 ) \int_{x_1}^{x_2}f(x)dx=\frac{1}{6}\times (x_2-x_1)\times (y_1+y_2+4\times y_3) x1x2f(x)dx=61×(x2x1)×(y1+y2+4×y3)

下面给出简单的证明:

g ( x ) = A × x 2 + B × x + C g(x)=A\times x^2+B\times x+C g(x)=A×x2+B×x+C 为拟合后的抛物线,则有 ∫ x 1 x 2 f ( x ) d x ≈ ∫ x 1 x 2 g ( x ) d x \int_{x_1}^{x_2}f(x)dx≈\int_{x_1}^{x_2}g(x)dx x1x2f(x)dxx1x2g(x)dx
= W ( x 2 ) − W ( x 1 ) =W(x_2)-W(x_1) =W(x2)W(x1)
= A 3 × ( x 2 ) 3 + B 2 × ( x 2 ) 2 + C × x 2 − ( A 3 × ( x 1 ) 3 + B 2 × ( x 1 ) 2 + C × x 1 ) =\frac{A}{3}\times (x_2)^3+\frac{B}{2}\times (x_2)^2+C\times x_2-\left(\frac{A}{3}\times (x_1)^3+\frac{B}{2}\times (x_1)^2+C\times x_1\right) =3A×(x2)3+2B×(x2)2+C×x2(3A×(x1)3+2B×(x1)2+C×x1)
= A 3 × ( ( x 2 ) 3 − ( x 1 ) 3 ) + B 2 × ( ( x 2 ) 2 − ( x 1 ) 2 ) + C × ( x 2 − x 1 ) =\frac{A}{3}\times \left((x_2)^3-(x_1)^3\right)+\frac{B}{2}\times \left((x_2)^2-(x_1)^2\right)+C\times (x_2-x_1) =3A×((x2)3(x1)3)+2B×((x2)2(x1)2)+C×(x2x1)
= x 2 − x 1 6 × ( 2 × A × ( ( x 2 ) 2 + x 1 × x 2 + ( x 1 ) 2 ) + 3 × B × ( x 2 + x 1 ) + 6 × C ) =\frac{x_2-x_1}{6}\times \left(2\times A\times \left((x_2)^2+x_1\times x_2+(x_1)^2\right)+3\times B\times (x_2+x_1)+6\times C\right) =6x2x1×(2×A×((x2)2+x1×x2+(x1)2)+3×B×(x2+x1)+6×C)
展开化简整理得:
= x 2 − x 1 6 × ( A ′ × ( x 1 ) 2 + B ′ × x 1 + C ′ + A ′ × ( x 2 ) 2 + B ′ × x 2 + C ′ + 4 × A × ( x 2 + x 1 2 ) 2 ) =\frac{x_2-x_1}{6}\times \left(A'\times (x_1)^2+B'\times x_1+C'+A'\times (x_2)^2+B'\times x_2+C'+4\times A\times \left(\frac{x_2+x_1}{2}\right)^2\right) =6x2x1×(A×(x1)2+B×x1+C+A×(x2)2+B×x2+C+4×A×(2x2+x1)2)
将其组合成完全平方式(配方)后
= x 2 − x 1 6 × ( g ( x 1 ) + g ( x 2 ) + 4 × g ( x 1 + x 2 2 ) ) =\frac{x_2-x_1}{6}\times \left(g(x_1)+g(x_2)+4\times g\left(\frac{x_1+x_2}{2}\right)\right) =6x2x1×(g(x1)+g(x2)+4×g(2x1+x2))
= x 2 − x 1 6 × ( g ( x 1 ) + g ( x 2 ) + 4 × g ( x 3 ) ) =\frac{x_2-x_1}{6}\times \left(g(x_1)+g(x_2)+4\times g(x_3)\right) =6x2x1×(g(x1)+g(x2)+4×g(x3))
于是我们就得到了simpson积分公式
∫ a b f ( x ) d x ≈ b − a 6 × [ g ( a ) + 4 × g ( a + b 2 ) + g ( b ) ] \int_a^bf(x)dx≈\frac{b-a}{6}\times \left[g(a)+4\times g\left(\frac{a+b}{2}\right)+g(b)\right] abf(x)dx6ba×[g(a)+4×g(2a+b)+g(b)]

在实际计算中 g ( x ) g(x) g(x)的值可以用原函数 f ( x ) f(x) f(x)的值来代替,于是就是如下公式:
∫ a b f ( x ) d x ≈ b − a 6 × [ f ( a ) + 4 × f ( a + b 2 ) + f ( b ) ] \int_a^bf(x)dx≈\frac{b-a}{6}\times \left[f(a)+4\times f\left(\frac{a+b}{2}\right)+f(b)\right] abf(x)dx6ba×[f(a)+4×f(2a+b)+f(b)]

代码:

double simpson(double l,double r){
	return (r-l)*(f(l)+4*f((l+r)/2)+f(r))/6;
}

自适应辛普森积分法

  • 那么实际程序该如何实现辛普森积分求积呢?

我们如果要求 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx的近似值的话,可以用递归二分区间求解来达到要求精度。
用如下公式:
∫ a b f ( x ) d x = ∫ a m i d f ( x ) d x + ∫ m i d b f ( x ) d x \int_a^bf(x)dx=\int_a^{mid}f(x)dx+\int_{mid}^bf(x)dx abf(x)dx=amidf(x)dx+midbf(x)dx
其中 m i d = a + b 2 mid=\frac{a+b}{2} mid=2a+b,证明:显然式证明 😃

但是因为是浮点数(小数),那么递归多少层,在什么时候返回值结束递归呢?
我们容易知道如果递归到 b − a < e p s b-a<eps ba<eps的话精度虽然很高,但是时间复杂度太高了,但是如果递归少了,精度又得不到保证,那该如何是好呢?

  • 自适应法

自适应法,就是让程序根据实际情况决定如何运行执行操作。自己随便下的定义而已

这里我们就要用自适应法来解决这个问题啦,让程序自己去决定递归层数,而且又保证精度。

说的很高深,其实很简单。还是比较难吧

  • 自动化控制区间分割的大小。

实际操作:二分递归,当满足精度就计算返回值,结束递归。

伪代码:

function(l,r,eps,ans):
mid=(l+r)/2;
lval=左边的值,rval=右边的值;
if (满足精度) return 答案;
eps/=2;
else return 左边递归+右边递归;

注意,这里的 a n s ans ans表示上一层计算的整个区间的答案,用来和当前这层来判断精度, e p s eps eps在递归时每次除以2,这是为了消除精度误差叠加效应,当小误差多了就成大误差了,所以每次要缩小精度。

代码:

double asr(double l,double r,double eps,double ans){
	double mid=(l+r)/2;
    double lval=simpson(l,mid),rval=simpson(mid,r);
    if(fabs(lval+rval-ans)<=15*eps) return lval+rval+(lval+rval-ans)/15;
    return asr(l,mid,eps/2,lval)+asr(mid,r,eps/2,rval);
}
double asme(double a,double b,double eps){
	return asr(a,b,eps,simpson(a,b));
}

推荐文章


代码

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const db eps=1e-7;
db a,b,c,d,L,R;
db f(db x){return (c*x+d)/(a*x+b);}
db simpson(db l,db r){return (f(l)+f(r)+4*f((l+r)/2))*(r-l)/6;}
db asr(db l,db r,db exps,db val){
    db mid=(l+r)/2;
    db lval=simpson(l,mid),rval=simpson(mid,r);
    if(fabs(lval+rval-val)<=15*exps){return lval+rval+(lval+rval-val)/15;}
    return asr(l,mid,exps/2,lval)+asr(mid,r,exps/2,rval);
}
db asme(db l,db r,db exps){return asr(l,r,exps,simpson(l,r));}
int main(){
    scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&L,&R);
    printf("%lf\n",asme(L,R,eps));
    return 0;
}

代码


#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const db inf=30;
const db eps=1e-7,zero=1e-10;
db a;
db f(db x){return pow(x,a/x-x);}
db simpson(db l,db r){return (f(l)+f(r)+4*f((l+r)/2))*(r-l)/6;}
db asr(db l,db r,db exps,db val){
    db mid=(l+r)/2;
    db lval=simpson(l,mid),rval=simpson(mid,r);
    if(fabs(lval+rval-val)<=15*exps) return lval+rval+(lval+rval-val)/15;
    return asr(l,mid,exps/2,lval)+asr(mid,r,exps/2,rval);
}
db asme(db l,db r,db exps){return asr(l,r,exps,simpson(l,r));}
int main(){
    scanf("%lf",&a);
    if(a<0)puts("orz");
    else printf("%.5lf\n",asme(zero,inf,eps));
    return 0;
}

这个虽然求的是不定积分但是,不要被吓到了,因为当 x x x大于30左右后,函数值趋近于0,所以可以不计。
然后当 a < 0 a<0 a<0时函数不收敛,所以无解。


其他题目[NOI2005]月下柠檬树

  • simpson的其他用途:

和扫描线结合求圆面积并和其他不规则图形面积等。

【2018.9.7】最近发现的好文章IN

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VictoryCzt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值