微积分入门:微积分基础

本文详细介绍了微积分的基础知识,包括导数定义、求导法则、高阶导数及其应用,如一阶导数用于判断函数单调性,二阶导数判断函数凹凸性,以及不定积分与微分方程的概念。内容涵盖三角函数、幂法则、链式法则、积分计算等,并通过实例展示了如何使用这些工具解决实际问题,如经济学中的边际分析和物理中的功。
摘要由CSDN通过智能技术生成

基础

标准符号约定:

  • ( s i n x ) n (sinx)^n (sinx)n 通常写作 sin ⁡ n x \sin^nx sinnx
  • ( s i n x ) − 1 (sinx)^{-1} (sinx)1 不能写作 sin ⁡ − 1 x \sin^{-1}x sin1x
  • n的阶乘: n ! = 1 ⋅ 2 ⋅ 3 ⋯ n n! = 1 \cdot 2 \cdot 3 \cdots n n!=123n

通用写法:

  • x 1 2 = x x^{\frac{1}{2}} = \sqrt{x} x21=x
  • x − 1 2 = 1 x x^{\frac{-1}{2}} = \frac{1}{\sqrt{x}} x21=x 1
  • 画图时,为了显示图形性质而非定量分析时,x轴、y轴可以不同比例、长度单位

基础知识:

  • Binomial theorem二项式定理

三角函数

正切tangent,y/x,切线斜率:
tan ⁡ x = sin ⁡ x cos ⁡ x \tan x = \frac{\sin x}{\cos x} tanx=cosxsinx

余切cotangent:
cot ⁡ x = cos ⁡ x sin ⁡ x = 1 tan ⁡ x \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x} cotx=sinxcosx=tanx1

正割secant:
sec ⁡ x = 1 cos ⁡ x \sec x = \frac{1}{\cos x} secx=cosx1

余割cosecant:
csc ⁡ x = 1 sin ⁡ x \csc x = \frac{1}{\sin x} cscx=sinx1

约定:

  • 微积分中通常用户弧度表示角度,而非度数(度数在微积分中会出现重复因子 π 180 \frac{\pi}{180} 180π

导数定义derivative、微分

导数定义

y相对于x的变化率:

  • d y d x = lim ⁡ Δ x → 0 Δ y Δ x \frac{dy}{dx} = \lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x} dxdy=limΔx0ΔxΔy
  • d y d x = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x \frac{dy}{dx} = \lim_{\Delta x \to 0}\frac{f(x+\Delta x) - f(x)}{\Delta x} dxdy=limΔx0Δxf(x+Δx)f(x)

等价于

  • Δ y Δ x = d y d x + ϵ = f ′ ( x ) + ϵ , 当 Δ x − > 0 时 , ϵ − > 0 \frac{\Delta y}{\Delta x} = \frac{dy}{dx} + \epsilon = f'(x) + \epsilon, 当\Delta x->0时, \epsilon->0 ΔxΔy=dxdy+ϵ=f(x)+ϵ,Δx>0,ϵ>0
  • Δ y = f ′ ( x ) Δ x + ϵ Δ x , 当 Δ x − > 0 时 , ϵ − > 0 \Delta y = f'(x)\Delta x + \epsilon \Delta x, 当\Delta x->0时, \epsilon->0 Δy=f(x)Δx+ϵΔx,Δx>0,ϵ>0

求导法则(背)

  • 函数连续的话: Δ x → 0 \Delta x \to 0 Δx0 Δ y → 0 \Delta y \to 0 Δy0
  • 可导意味着连续,连续不一定可导

常量

常量的导数是0,常量是横线,任意一点的切线斜率是0

d d x c = 0 \frac{d}{dx}c = 0 dxdc=0

x的n次幂

d d x x n = n x n − 1 \frac{d}{dx}x^n = nx^{n-1} dxdxn=nxn1(n为正负整数或者分数)

c * u

d d x c u = c d d x u \frac{d}{dx}cu = c\frac{d}{dx}u dxdcu=cdxdu (u是x的函数)

u + v

d d x ( u + v ) = d u d x + d v d x \frac{d}{dx}{(u+v)} = \frac{du}{dx} + \frac{dv}{dx} dxd(u+v)=dxdu+dxdv(u、v是x的函数,多个函数同理)

u - v

d d x ( u − v ) = d u d x − d v d x \frac{d}{dx}{(u-v)} = \frac{du}{dx} - \frac{dv}{dx} dxd(uv)=dxdudxdv(u、v是x的函数,多个函数同理)

积法则、积法则、product rule

d d x ( u v ) = u d v d x + v d u d x \frac{d}{dx} (uv) = u\frac{dv}{dx} + v\frac{du}{dx} dxd(uv)=udxdv+vdxdu(u、v是x的函数)

商法则、商法则、quotient rule

d d x ( u v ) = v d u / d x − u d v / d x v 2 \frac{d}{dx}(\frac{u}{v}) = \frac{v du/dx - u dv/dx}{v^2} dxd(vu)=v2vdu/dxudv/dx(u、v是x的函数,且v != 0)

链式法则

复合函数 f ( g ( x ) ) f(g(x)) f(g(x))的链式法则:
d y d x = d y d u ⋅ d u d x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} dxdy=dudydxdu

可以通过du可以消除来记忆,或者速度变化率=时间变化率*加速度变化率,或者火车是汽车的8倍快,汽车是步行的5倍快,则火车是步行的40倍快。可以扩展到y依赖u、u依赖v,多个的场景。

幂法则、power rule

d d x u n = n u n − 1 d u d x \frac{d}{dx}u^n=nu^{n-1}\frac{du}{dx} dxdun=nun1dxdu (n是正负整数、0,或者分数)

三角函数

d d x sin ⁡ x = cos ⁡ x \frac{d}{dx}\sin x = \cos x dxdsinx=cosx

d d x cos ⁡ x = − sin ⁡ x \frac{d}{dx}\cos x = -\sin x dxdcosx=sinx

d d x sin ⁡ u = cos ⁡ u d u d x \frac{d}{dx}\sin u = \cos u \frac{du}{dx} dxdsinu=cosudxdu (u是x的可导函数)

d d x cos ⁡ u = − sin ⁡ u d u d x \frac{d}{dx}\cos u = - \sin u \frac{du}{dx} dxdcosu=sinudxdu (u是x的可导函数)

d d x tan ⁡ x = sec ⁡ 2 x \frac{d}{dx}\tan x = \sec^2 x dxdtanx=sec2x

d d x tan ⁡ u = sec ⁡ 2 x d u d x \frac{d}{dx}\tan u = \sec ^2 x \frac{du}{dx} dxdtanu=sec2xdxdu

隐函数implicit function

F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0

隐微分implicit differentiation,表达式两边同时对dx求导,求出 d y d x \frac{dy}{dx} dxdy

高阶导数

0阶导数 f ( x ) = f 0 ( x ) = y ( 0 ) f(x) = f^0(x) = y^{(0)} f(x)=f0(x)=y(0)

First derivative 一阶导数 f ′ ( x ) = y ′ = d y d x = d d x f ( x ) f'(x) = y' = \frac{dy}{dx} = \frac{d}{dx}f(x) f(x)=y=dxdy=dxdf(x)

Second derivative 二阶导数 f ′ ′ ( x ) = y ′ ′ = d 2 y d x 2 = d 2 d x 2 f ( x ) = d d x ( d y d x ) f''(x) = y'' = \frac{d^2y}{dx^2} = \frac{d^2}{dx^2}f(x) = \frac{d}{dx}(\frac{dy}{dx}) f′′(x)=y′′=dx2d2y=dx2d2f(x)=dxd(dxdy)

Thrid derivative 二阶导数 f ′ ′ ′ ( x ) = y ′ ′ ′ = d 3 y d x 3 = d 3 d x 3 f ( x ) f'''(x) = y''' = \frac{d^3y}{dx^3} = \frac{d^3}{dx^3}f(x) f′′′(x)=y′′′=dx3d3y=dx3d3f(x)

nth derivative n阶导数 f ( n ) ( x ) = y ( n ) = d n y d x n = d n d x n f ( x ) = n ! f^{(n)}(x) = y^{(n)} = \frac{d^ny}{dx^n} = \frac{d^n}{dx^n}f(x)=n! f(n)(x)=y(n)=dxndny=dxndnf(x)=n!

读法:

  • f n ( x ) f^n(x) fn(x) 关于x的f n阶导数
  • y ( n ) y^{(n)} y(n) y的n阶导数

导数的应用

如果在某个区间上有,当 x 1 < x 2 x_1 < x_2 x1<x2 时,则 f ( x 1 ) < f ( x 2 ) f(x_1) < f(x_2) f(x1)<f(x2),则称 f ( x ) f(x) f(x)在该区间递增(在该区间是递增函数),几何图形上点是上升的;否则是递减,点是下降的。

函数 f ( x ) f(x) f(x) f ′ ( x ) > 0 f'(x)>0 f(x)>0 (斜率>0)的任何区间上都是递增,反之递减。递增、递减特性可用于画几何图形。

一阶导数

临界点critical points、(相对)最小值minimum、最大值maximum
absolute绝对最小值、绝对最大值
步骤:
使用导数画出函数f(x)线:

  • 对函数 f ( x ) f(x) f(x)求导 y ′ y' y,通过 y ′ = 0 y' = 0 y=0 求出临界点x(可能多个)
  • 通过临界点x代入原函数 f ( x ) f(x) f(x),得到y值
  • 根据导数 y ′ y' y及临界点x,求出被临界点分割的多个区间里函数 f ( x ) f(x) f(x)的升降方向
  • x趋近于 ∞ \infty − ∞ -\infty 的函数f(x)的值
  • f ( x ) f(x) f(x)在非作用域附近点的值

最大、最小值可能出现的方式:

  • 一阶导数为0的点,导数为0的点不一定是区间上的局部最大、最小值
  • 端点endpoints
  • 尖端cups
  • 拐角corners

求最大、最小值步骤:

  • 理解题意
  • 几何的,则画出草图
  • 确定常量、变量
  • 如果Q是要最大或最小化的量,写出Q的公式,如果Q是多变量的函数,想办法替换为关于一个单变量的函数
  • 对Q的单变量公式求导,令一阶导数=0

求速率相关问题的步骤:

  • 理解题意
  • 画草图,标记常量如V、L,及随时间t变化的因变量用变量符号如t标记
  • 用导数形式如 d v / d t , {dv/dt}, dv/dt,{dx/dt}$写出已知速率、求取速率
  • 找出2个因变量的等式,消除上一步微分方程的其中一个变量(该步骤后,才能代入常量值)
  • 步骤3中给定的已知变化率代入步骤4中获得的微分方程,并求解所需的变化率

二阶导数

  • f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0 则表示斜率函数 f ′ ( x ) f'(x) f(x)是一个递增函数,则表示原函数 f ( x ) f(x) f(x)的切线随着x增大是逆时针转动,此时这个原函数的曲线称做向上凹,否则向下凹。
  • 曲线上凹凸方向改变的点为原函数 f ( x ) f(x) f(x)的拐点。
  • 如果 f ′ ′ ( x ) f''(x) f′′(x)是连续,且在点P左右相邻的点代入 f ′ ′ ( x ) f''(x) f′′(x)的数值符号相反,即凹凸方向改变,则 f ′ ′ ( P ) = 0 f''(P) = 0 f′′(P)=0
  • f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f′′(x0)=0 不能确定 x 0 x_0 x0点就是拐点。
  • f ′ ′ ( x ) = 0 f''(x) = 0 f′′(x)=0求的点x可能不在定义域,但是也可能是原函数的拐点
  • f ′ ′ ( x ) f''(x) f′′(x)的递增、递减与临界点结合确定原函数的最大、最小值;向下凹有最大值,向上凹有最小值

求近似解

牛顿法近似求解方程, x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} xn+1=xnf(xn)f(xn)
有些情形不适用

经济学应用

边际分析。
成本函数的导数为边际成本(成本变化的速率)(marginal cost) C ′ ( x ) C'(x) C(x)
经济学里,产品最小个数通常为整数1,所以 C ′ ( x ) ≈ C ( x + Δ x ) − C ( x ) Δ x = C ( x + 1 ) − C ( x ) C'(x)\approx \frac{C(x+\Delta x)-C(x)}{\Delta x}=C(x+1)-C(x) C(x)ΔxC(x+Δx)C(x)=C(x+1)C(x)

平均成本: C ( x ) x \frac{C(x)}{x} xC(x),最高效的生产水平就是使平均成本最小(生产单个产品成本最小)

当平均成本是最小值时,边际成本的值=平均成本的值,即 C ′ ( x ) = C ( x ) x C'(x)=\frac{C(x)}{x} C(x)=xC(x)

收益函数: R ( x ) = x p ( x ) R(x)=xp(x) R(x)=xp(x)(p(x)表示x的价格函数)

边际收益(marginal revenue),为收益的导数,收益变化的速率, R ′ ( x ) = R ( x + 1 ) − R ( x ) R'(x) = R(x+1)-R(x) R(x)=R(x+1)R(x)

利润函数(生产x个产品的利润总和): P ( x ) = R ( x ) − C ( x ) = x p ( x ) − C ( x ) P(x) = R(x) - C(x) = xp(x)-C(x) P(x)=R(x)C(x)=xp(x)C(x)(p(x)表示x的价格函数)

边际利润(marginal profit),利润的导数,利润变化的速率。

最大化利润时,则: P ′ ( x ) = R ′ ( x ) − C ′ ( x ) = 0 P'(x)=R'(x)-C'(x)=0 P(x)=R(x)C(x)=0,即 R ′ ( x ) = C ′ ( x ) R'(x)=C'(x) R(x)=C(x),如果利润是最大值,则边际成本=边际收益.

即,当 R ′ ( x ) = C ′ ( x ) R'(x)=C'(x) R(x)=C(x),且 R ′ ′ ( x ) < C ′ ′ ( x ) R''(x)<C''(x) R′′(x)<C′′(x)时,利润有最大值

需求弹性函数: E ( p ) = − p x d x d p E(p)=-\frac{p}{x}\frac{dx}{dp} E(p)=xpdpdx(p为价格),E§>1时需求是弹性的,否则非弹性如果E§<1

不定积分与微分方程

微分方程

积分:反微分,切线的反向问题

导数定义: f ′ ( x ) = lim ⁡ Δ x → 0   Δ y Δ x f'(x)=\lim_{\Delta x \to 0}\ \frac{\Delta y}{\Delta x} f(x)=limΔx0 ΔxΔy
计算导数时: d y d x \frac{dy}{dx} dxdy是一个整体的符号,不是一个分数;只是有时比如链式法则时可以当做分数去消除;

微分表示法中: d y d x \frac{dy}{dx} dxdy是一个分数. d y = f ′ ( u ) d u dy=f'(u)du dy=f(u)du,举例如 d ( sin ⁡ u ) = cos ⁡ u d u d(\sin u) = \cos u du d(sinu)=cosudu

d y d x = d i f f e r e n t i a l o f y d i f f e r e n t i a l o f x = y 的微分 x 的微分 \frac{dy}{dx} = \frac{differential of y}{differential of x}=\frac{y的微分}{x的微分} dxdy=differentialofxdifferentialofy=x的微分y的微分

等式左边含有微分比如dy的话,右边也必须有微分。

d y d x = d y d u d u d x \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} dxdy=dudydxdu链式法则的微分版本: d y = f ′ ( u ) g ′ ( x ) d x dy=f'(u)g'(x)dx dy=f(u)g(x)dx

当dx很小时,正切线无限逼近曲线,此时 Δ y ≈ = d y \Delta y \approx = dy Δy≈=dy Δ y = f ( x + d x ) \Delta y=f(x+dx) Δy=f(x+dx)比较难计算,
则计算x附近的近似值可以转化为 f ( x + d x ) ≈ f ( x ) + d y f(x+dx) \approx f(x) + dy f(x+dx)f(x)+dy(切线近似、线性近似公式)

注意

  1. 函数 y = f ( x ) y=f(x) y=f(x)二级导数的标准表示形式是: d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y,且该形式不可分离; d 2 y d^2y d2y d x 2 dx^2 dx2本身绝对没有任何意义,也不会给予其意义

不定积分

如果F(x)和G(x)两个函数在某个区间上,有相同的导数f(x),则G(x) = F(x) + c(对于该区间上的所有x)。

如果f(x)已知,若 d d x F ( x ) = f ( x ) \frac{d}{dx}F(x) = f(x) dxdF(x)=f(x)则称F(x)是f(x)的一个反导数、反函数,通常称为积分;求解过程为反微分,通常称为积分。

f ( x ) f(x) f(x)的积分标准符号表示为: ∫ f ( x ) d x \int f(x)dx f(x)dx,读作 f ( x ) d x f(x)dx f(x)dx的积分。

∫ x 2 d x = 1 3 x 3 \int x^2dx=\frac{1}{3}x^3 x2dx=31x3,及 ∫ x 2 d x = 1 3 x 3 + c \int x^2dx=\frac{1}{3}x^3 + c x2dx=31x3+c,都是正确的,前面是一个积分,后面是所有可能的积分,因为没有确定的唯一一个积分,所以 ∫ f ( x ) d x \int f(x)dx f(x)dx也叫做不定积分,c是积分常数表示任意常数,正式答案要+c。

  • 幂法则的积分: ∫ x n d x = x n + 1 n + 1 , n ≠ − 1 \int x^ndx=\frac{x^{n+1}}{n+1}, n \neq -1 xndx=n+1xn+1,n=1;更通用形式: ∫ [ f ( x ) ] n f ′ ( x ) d x = [ f ( x ) ] n + 1 n + 1 , n ≠ − 1 \int [f(x)]^nf'(x)dx=\frac{[f(x)]^{n+1}}{n+1}, n \neq -1 [f(x)]nf(x)dx=n+1[f(x)]n+1,n=1
  • ∫ c f ( x ) d x = c ∫ f ( x ) d x \int cf(x)dx = c\int f(x)dx cf(x)dx=cf(x)dx
  • ∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx [f(x)+g(x)]dx=f(x)dx+g(x)dx
  • ∫ cos ⁡ u d u = sin ⁡ u + c \int \cos udu = \sin u + c cosudu=sinu+c
  • ∫ s i n u d u = − cos ⁡ u + c \int sin udu = -\cos u + c sinudu=cosu+c

微分方程&分离变量法

∫ f ( x ) d x = F ( x ) \int f(x)dx = F(x) f(x)dx=F(x),(1)
等价于 d d x F ( x ) = f ( x ) \frac{d}{dx}F(x) = f(x) dxdF(x)=f(x),f(x)称作被积函数, ∫ \int 是积分符号

  1. 可以认为符号 ∫ ⋯ d x \int \cdots dx dx是对函数 f ( x ) f(x) f(x)操作来求得其积分函数,或反函数F(x)。从这个角度积分符号 ∫ \int d x dx dx一起作为单个符号的一部分;积分符号表示这是一个积分操作, d x dx dx的作用仅仅是表示x是积分变量
  2. d F ( x ) = f ( x ) d x dF(x) = f(x)dx dF(x)=f(x)dx f ( x ) d x f(x)dx f(x)dx被明确看做是 F ( x ) F(x) F(x)的微分,则(1)可以看做是对F(x)的微分(即f(x)dx)进行积分操作,得到F(x)本身; ∫ \int 则可以表示微分符号 d d d的反向操作(不将dx看做一个整体符号);积分是微分的反操作

第二种解释更方便。

一阶微分方程: d y d x = f ( x ) \frac{dy}{dx} = f(x) dxdy=f(x) d y = f ( x ) d x dy = f(x)dx dy=f(x)dx
复杂的微分方程: d y d x = − 2 x y 2 \frac{dy}{dx} = -2xy^2 dxdy=2xy2,求取得 y = 1 x 2 + c y=\frac{1}{x^2+c} y=x2+c1是前面微分方程的通解,c的不同会给出不同的结果

分离变量

一阶积分分离x、y到等式两边,得 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx,则求积分后,得 ∫ g ( y ) d y = ∫ f ( x ) d x + c \int g(y)dy = \int f(x)dx + c g(y)dy=f(x)dx+c

备注

  • 通常来说微分方程应该叫做导数方程,但是微积分早起,微分是主要概念,导数是次要概念,因为沿用微分方程的叫法

换元积分法

代换积分法,被积函数的一部分本质上是另一部分的导数

步骤:

  • 仔细选择u,比如 u = g ( x ) u=g(x) u=g(x)
  • 计算 d u = g ′ ( x ) d x du=g'(x)dx du=g(x)dx
  • 在给定积分中代入 g ( x ) = u g(x)=u g(x)=u以及 g ′ ( x ) = d u g'(x)=du g(x)=du,此时整个积分表达式应该都是关于u的,不能含有x,否则就换一个其他选择的u
  • 计算上步代入的积分
  • 使用g(x)替换结果中的u,结果应该都是关于x的

力学应用

  • v = d s d t v=\frac{ds}{dt} v=dtds
  • a = d v d t = d d t ( d s d t ) = d 2 s d t 2 a=\frac{dv}{dt}=\frac{d}{dt}(\frac{ds}{dt})=\frac{d^2s}{dt^2} a=dtdv=dtd(dtds)=dt2d2s
  • a = F m a=\frac{F}{m} a=mF, F = m a F=ma F=ma
  • F = − G M m s 2 F=-G\frac{Mm}{s^2} F=Gs2Mm
  • G M = g R 2 GM=gR^2 GM=gR2
  • 地球的逃逸速度: v 0 ≥ 2 g R v_{0} \geq \sqrt{2gR} v02gR

定积分

微分处理切线斜率,积分处理面积问题

当a<b且曲线在x轴上方时,
x=a,x=b所所表示的垂直线与f(x)表示的曲线图形下方、x轴上方形成的图形面积标准符号形式为: ∫ a b f ( x ) d x = lim ⁡ m a x Δ x → 0 Σ k = 1 n f ( x k ∗ ) Δ x k \int_{a}^{b}f(x)dx=\lim_{max \Delta x \to 0}\Sigma_{k=1}^n f(x_k^*)\Delta x_k abf(x)dx=limmaxΔx0Σk=1nf(xk)Δxk,等式右边是黎曼和
是一个数值,与 ∫ f ( x ) d x \int f(x)dx f(x)dx不同,表示的是一个函数或者一个函数组(一组函数的集合),读作从a到b f(x)dx的定积分。

  • ∫ \int 是字母S(sum求和)拉长后的形式,因为定积分和小数量的求和有相似性
  • 求和的极限 Σ \Sigma Σ操作替换为 ∫ \int
  • Δ \Delta Δ替换为 d d d(求极限, dy/dx)
  • a,b是积分的上下限,a是下限、下边界,b是上限、上边界,非极限的含义。在定积分中总是会有积分上下限的限制,和 ∫ f ( x ) d x 区分 \int f(x)dx区分 f(x)dx区分
  • 定积分中:f(x)是被积函数,x是积分变量
  • 所有连续函数都是可积的

公式:

  • ∫ 0 b x d x = b 2 2 \int_{0}^bxdx = \frac{b^{2}}{2} 0bxdx=2b2
  • ∫ 0 b x 2 d x = b 3 3 \int_{0}^bx^2dx = \frac{b^{3}}{3} 0bx2dx=3b3
  • ∫ 0 b x 3 d x = b 4 4 \int_{0}^bx^3dx = \frac{b^{4}}{4} 0bx3dx=4b4
  • ∫ 0 b x n d x = b n + 1 n + 1 \int_{0}^bx^ndx = \frac{b^{n+1}}{n+1} 0bxndx=n+1bn+1(n为正整数)
  • ∫ 0 b cos ⁡ x d x = sin ⁡ b ( 0 < b ≤ π 2 ) ) \int_{0}^b\cos x dx = \sin b (0<b\leq \frac{\pi}{2})) 0bcosxdx=sinb0<b2π)

求和符号

很多数字求和缩写的标准数学符号表示: Σ k = 1 n a k = a 1 + a 2 + . . . + a n \Sigma_{k=1}^{n}a_k = a_1 + a_2 + ... + a_n Σk=1nak=a1+a2+...+an,表示 a 1 , a 2 . . . a n a_1,a_2...a_n a1,a2...an所有数的求和,读作 a k a_k ak的从k=1到n的求和,其中k为求和下标。

初等代数公式:

  • Σ k = 1 n k = 1 + 2 + ⋯ + n = n ( n + 1 ) 2 \Sigma_{k=1}^{n}k = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} Σk=1nk=1+2++n=2n(n+1)
  • Σ k = 1 n k 2 = 1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \Sigma_{k=1}^{n}k^2= 1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6} Σk=1nk2=12+22++n2=6n(n+1)(2n+1)
  • Σ k = 1 n k 3 = 1 3 + 2 3 + ⋯ + n 3 = [ n ( n + 1 ) 2 ] 2 \Sigma_{k=1}^{n}k^3= 1^3 + 2^3 + \cdots + n^3 = [\frac{n(n+1)}{2}]^2 Σk=1nk3=13+23++n3=[2n(n+1)]2

定积分性质

  • 代数面积(正负),曲线在x轴下方时:面积= − ∫ a b -\int_a^b abf(x)dx,几何面积(都是正)
  • ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x , a ≠ b \int_a^bf(x)dx = -\int_b^af(x)dx, a\neq b abf(x)dx=baf(x)dx,a=b
  • ∫ a a f ( x ) d x = 0 \int_a^af(x)dx=0 aaf(x)dx=0
  • ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^bf(x)dx = \int_a^c f(x) dx + \int_c^b f(x)dx abf(x)dx=acf(x)dx+cbf(x)dx,不限制c在a,b之间、a<b
  • ∫ a b c f ( x ) d x = c ∫ a b f ( x ) d x \int_a^b cf(x)dx = c\int_a^b f(x)dx abcf(x)dx=cabf(x)dx
  • ∫ a b [ f ( x ) + g ( x ) ] d x = ∫ a b f ( x ) d x + ∫ a b g ( x ) d x \int_a^b[f(x) + g(x)]dx = \int_a^bf(x)dx + \int_a^bg(x)dx ab[f(x)+g(x)]dx=abf(x)dx+abg(x)dx
  • 如果在闭区间[a,b]上有 f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),则 ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int_a^b f(x)dx \leq \int_a^b g(x)dx abf(x)dxabg(x)dx

变上限积分

∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx,x是虚设变量、虚拟变量,可以替换为其他如 ∫ a b f ( t ) d t \int_a^bf(t)dt abf(t)dt

变上限积分来构造一个函数 F ( x ) = ∫ a x f ( x ) d x F(x)=\int_a^xf(x)dx F(x)=axf(x)dx,但是这种写法x有歧义,通常写作 F ( x ) = ∫ a x f ( t ) d t F(x) = \int_a^xf(t)dt F(x)=axf(t)dt
F(x)有2个重要属性:

  • 只要被积函数在[a,x]上连续,则该函数就存在
  • F(x)的导数就是被积函数的上限时的函数: d d x F ( x ) = d d x ∫ a x f ( t ) d t = f ( x ) \frac{d}{dx}F(x) = \frac{d}{dx}\int_a^xf(t)dt = f(x) dxdF(x)=dxdaxf(t)dt=f(x)

微积分基本定理

  1. d A d x = f ( x ) \frac{dA}{dx} = f(x) dxdA=f(x),面积A相对于x的变化率等于该区域右边缘的长度,A(x)是曲线下在垂直线a和垂直线x之间的面积
  2. 根据步骤1,A(x)是f(x)的一个原函数(反导数),如果F(x)是f(x)的任意反导数,则 A ( x ) = F ( x ) + c A(x) = F(x) + c A(x)=F(x)+c
  3. ∫ a b f ( x ) d x = A ( b ) = F ( b ) − F ( a ) \int_{a}^bf(x)dx = A(b)= F(b) - F(a) abf(x)dx=A(b)=F(b)F(a)

微积分基本定理:
如果f(x)在闭区间[a, b]连续,且F(x)是f(x)的任意反导数,则 d d x F ( x ) = f ( x ) \frac{d}{dx}F(x) = f(x) dxdF(x)=f(x),等价于 ∫ f ( x ) d x = F ( x ) \int f(x)dx = F(x) f(x)dx=F(x),则 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^bf(x)dx=F(b) -F(a) abf(x)dx=F(b)F(a)

该定理把通过求和的极限来计算定积分转化为更简单的求导数问题,然后求差值。

  • 定积分简写: ∫ a b f ( x ) d x = F ( x ) ] a b \int_a^bf(x)dx=F(x)]_a^b abf(x)dx=F(x)]ab,读作F(x) 括号a,b.
  • 在计算反导数计算定积分时,积分常量是可以忽略,因为会消除。
  • 基本定理在定积分和反导数之间建立牢固的联系,通常用积分符号表示反导数如 ∫ f ( x ) d x = F ( x ) \int f(x)dx = F(x) f(x)dx=F(x)。定积分、不定积分不再强调,统称积分,需要自己确认是代表函数、数值。
  • 导数是切线的斜率,定积分是曲线下的面积

积分的应用

如果f(x)在闭区间[a,b]连续,则 lim ⁡ m a x Δ x → 0 Σ k = 1 n f ( x k ∗ ) Δ x k = ∫ a b f ( x ) d x = F ( x ) ] a b = F ( b ) − F ( a ) \lim_{max \Delta x \to 0}\Sigma_{k=1}^n f(x_k^*)\Delta x_k = \int_{a}^{b}f(x)dx = F(x)]_a^b = F(b) - F(a) limmaxΔx0Σk=1nf(xk)Δxk=abf(x)dx=F(x)]ab=F(b)F(a),F(x)是f(x)的任意不定积分。

积分的直观理解

曲线下的面积理解:

  • 假如曲线在区间[a,b]分成非常多份,每份的高度为y,宽度dx,则面积 d A = y d x = f ( x ) d x dA = ydx = f(x)dx dA=ydx=f(x)dx,一份面积称为面积微元
  • 将所有的份加起来求[a,b]下的总面积, A = ∫ d A A = \int dA A=dA
  • x从a增长到b时,面积扫过该区域, A = ∫ d A = ∫ y d x = ∫ a b f ( x ) d x A = \int dA = \int ydx = \int_a^bf(x)dx A=dA=ydx=abf(x)dx
    积分是通过将一个量(面积、长度、体积、表面积等)切分成非常多方便的小份,然后将所有的小份加起来

两条曲线间的面积

在[a,b]区间,f(x)曲线在g(x)上,则面积微元: d A = [ f ( x ) − g ( x ) ] d x dA = [f(x) - g(x)]dx dA=[f(x)g(x)]dx;总面积计算公式: A = ∫ d A = ∫ a b [ f ( x ) − g ( x ) ] d x A = \int dA = \int_a^b[f(x)-g(x)]dx A=dA=ab[f(x)g(x)]dx

通过积分计算面积步骤:

  • 画草图表示要计算面积的区域,写下边界曲线方程,找出交点
  • 决定是使用宽度为dx对的垂直线条,还是宽度为dy的水平线条,在图上画一个线条
  • 写出每一份线条的面积公式:dA=长*宽,dA应该只含有x变量或者y变量。
  • 在适当的x或者y边界对dA积分,有时对称性、上下限选择0可能会简化运算

旋转体体积

沿x轴旋转一圈的球体,球体沿x轴的一部分,花瓶,圆锥体,圆柱体。
单份为厚度为dx的垂直薄条,旋转一圈,形成一个硬币一样的薄圆盘,体积微元: d V = π y 2 d x = π f ( x ) 2 d x dV = \pi y^2 dx = \pi f(x)^2dx dV=πy2dx=πf(x)2dx
求所有份的体积公式: V = ∫ d V = ∫ π y 2 d x = ∫ a b π f ( x ) 2 d x V = \int dV = \int \pi y^2 dx = \int_a^b \pi f(x)^2dx V=dV=πy2dx=abπf(x)2dx

  • 圆盘法
    可以应用于其他类型的固体,其中体积元素不一定是圆盘。假设由垂直于某条线的平面所截取的立体的每个横截面是三角形或正方形或其他面积容易求出的几何图形。 那么我们的体积元素 dV 就是这个面积和薄片厚度的乘积,我们可以通过移动切片的方法计算固体的总体积。
    d V = A ( x ) d x dV = A(x)dx dV=A(x)dx -> V = ∫ d V = ∫ a b A ( x ) d x V = \int dV = \int_a^bA(x)dx V=dV=abA(x)dx

  • 垫圈法
    计算中间有中控空间的旋转体

  • 柱壳法
    沿y轴旋转,得到薄的圆柱壳,求取体积,积分. d V = 2 π x y d x dV = 2\pi xy dx dV=2πxydx, V = ∫ d V = ∫ 2 π x y d x = ∫ 0 b 2 π x y d x V = \int dV = \int 2\pi xydx = \int_0^b 2\pi xydx V=dV=2πxydx=0b2πxydx

弧长

ds当做弧长的微分元,根据对ds积分可得长度。

d s 2 ds^2 ds2,写微分时通常省略括号,表示 ( d x ) 2 (dx)^2 (dx)2,而非 d ( s 2 ) d(s^2) d(s2)

对x微分: d s = d x 2 + d y 2 = 1 + d y d x 2 d x ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + {\frac{dy}{dx}}^2}dx ds=dx2+dy2 =1+dxdy2 dx, arclenth = ∫ d s = ∫ a b 1 + d y d x 2 d x \int ds = \int_a^b\sqrt{1 + {\frac{dy}{dx}^2}}dx ds=ab1+dxdy2 dx

对y微分: d s = 1 + d y d y 2 d y ds = \sqrt{1 + {\frac{dy}{dy}}^2}dy ds=1+dydy2 dy, aclength = ∫ c d d x d x 2 + 1 d y \int_c^d \sqrt{{\frac{dx}{dx}}^2 + 1}dy cddxdx2+1 dy

注意:

  • y=f(x)在[a,b]上可能没有长度,即使函数连续。当函数有连续的导数即曲线是平滑曲线或者叫做连续转动的切线
  • s = ∫ a x 1 + [ f ′ ( t ) ] 2 d t s = \int_a^x \sqrt{1 + [f'(t)]^2}dt s=ax1+[f(t)]2 dt,s是一个上限x的函数

旋转体的表面积

  • d A = 2 π y d s = 2 π y d y d x 2 d x dA = 2\pi yds = 2\pi y\sqrt{{\frac{dy}{dx}}^2}dx dA=2πyds=2πydxdy2 dx
  • A = ∫ d A = ∫ 2 π y d s = ∫ a b 2 π y 1 + ( d y d x ) 2 d x A = \int dA = \int 2\pi yds = \int_a^b2\pi y \sqrt{1 + (\frac{dy}{dx})^2}dx A=dA=2πyds=ab2πy1+(dxdy)2 dx

也可以沿y轴

物理

功: d W = F ( x ) d x dW = F(x)dx dW=F(x)dx, W = ∫ d W = ∫ a b F ( x ) d x W=\int dW = \int_a^bF(x)dx W=dW=abF(x)dx

积分计算

直接代入

三角代入

带有平方根的计算

  • a 2 − x 2 \sqrt{a^2 - x^2} a2x2
  • a 2 + x 2 \sqrt{a^2 + x^2} a2+x2
  • x 2 − a 2 \sqrt{x^2 - a^2} x2a2
  • a x 2 + b x + c ax^2 + bx + c ax2+bx+c
  • a x 2 + b x + c \sqrt{ax^2 + bx + c} ax2+bx+c

平方根公式: ( x + A ) 2 = x 2 + 2 x A + A 2 (x+A)^2 = x^2 + 2xA + A^2 (x+A)2=x2+2xA+A2,结合三角公式替换:

  • sin ⁡ θ 2 + cos ⁡ θ 2 = 1 \sin \theta^2 + \cos \theta^2 = 1 sinθ2+cosθ2=1
  • 1 − s i n θ 2 = cos ⁡ θ 2 1 - sin \theta^2 = \cos \theta^2 1sinθ2=cosθ2
  • sec ⁡ θ 2 − 1 = tan ⁡ θ 2 \sec \theta ^2 - 1 = \tan \theta^2 secθ21=tanθ2

≥ 3 \geq 3 3次的平方根求解积分,无通用解法

部分分式分解

分子的次数比分母低,是常见函数;否则是反常函数,需要通过多项式长除法,得到多项式+分数的形式,如
P ( x ) Q ( x ) = 多项式 + R ( x ) Q ( x ) \frac{P(x)}{Q(x)} = 多项式 + \frac{R(x)}{Q(x)} Q(x)P(x)=多项式+Q(x)R(x)

公分母组合分数的逆过程,将分母转化为更简单的形式:分解为部分分数。

如果 P ( x ) / Q ( x ) P(x)/Q(x) P(x)/Q(x)是一个分子次数比分母低的有理数,Q(x)是n次的多项式,如果Q(x)可以被完全分解为不同的线性因子 x − r 1 , x − r 2 , x − r 3 . . . x − r n x - r_1, x-r_2, x-r_3...x-r_n xr1,xr2,xr3...xrn,则存在n个常数A1,A2…An,使
P ( x ) Q ( x ) = A 1 x − r 1 + A 2 x − r 2 + . . + A n x − r n \frac{P(x)}{Q(x)} = \frac{A_1}{x-r_1} + \frac{A_2}{x-r_2} + .. + \frac{A_n}{x - r_n} Q(x)P(x)=xr1A1+xr2A2+..+xrnAn

3阶以上很难分解,通过如果定理(如果分母最多次数为m):

  • A 1 x + B 1 x 2 + b x + c + A 2 x + B 2 ( x 2 + b x + c ) 2 + . . . + A m x + B m ( x 2 + b x + c ) m \frac{A_1x + B_1}{x^2 + bx +c} + \frac{A_2x + B_2}{(x^2 + bx +c)^2} + ... + \frac{A_mx + B_m}{(x^2 + bx +c)^m} x2+bx+cA1x+B1+(x2+bx+c)2A2x+B2+...+(x2+bx+c)mAmx+Bm
  • B 1 x − r + B 2 ( x − r ) 2 + . . . + B m ( x − r ) m \frac{B_1}{x-r} + \frac{B_2}{(x-r)^2} + ... + \frac{B_m}{(x-r)^m} xrB1+(xr)2B2+...+(xr)mBm

所有可以化为部分分数的都具有以下形式(n=1,2,3…):

  • A ( x − r ) n \frac{A}{(x-r)^n} (xr)nA
  • A x + b ( x 2 + b x + c ) n \frac{Ax+b}{(x^2+bx+c)^n} (x2+bx+c)nAx+b

分部积分法

部分分式积分法,部分积分法

  • d ( u v ) = u d v + v d u d(uv) = udv + vdu d(uv)=udv+vdu
  • u d v = d ( u v ) − v d u udv = d(uv) - vdu udv=d(uv)vdu
  • ∫ u d v = u v − ∫ v d u \int udv = uv - \int vdu udv=uvvdu

∫ u d v \int udv udv 计算积分可能比较难,可以转化为计算 ∫ v d u \int vdu vdu,选取的uv,u要容易计算导数du,v要容易计算积分

归约公式: ∫ sin ⁡ n x d x = − 1 n sin ⁡ n − 1 x cos ⁡ x + n − 1 n ∫ sin ⁡ n − 2 x d x \int \sin^n xdx = \frac{-1}{n}\sin ^{n-1}x \cos x + \frac{n-1}{n} \int \sin^{n-2}xdx sinnxdx=n1sinn1xcosx+nn1sinn2xdx

积分公式

  • ∫ x n d x = x n + 1 n + 1 \int x^ndx = \frac{x^{n+1}}{n+1} xndx=n+1xn+1
  • ∫ d x x = ln ⁡ x \int \frac{dx}{x} = \ln x xdx=lnx
  • ∫ e x d x = e x \int e^x dx = e^x exdx=ex
  • ∫ cos ⁡ x d x = sin ⁡ x \int \cos xdx = \sin x cosxdx=sinx
  • ∫ sin ⁡ x d x = − cos ⁡ x \int \sin xdx = -\cos x sinxdx=cosx
  • ∫ s e c 2 x d x = tan ⁡ x \int sec^2x dx = \tan x sec2xdx=tanx
  • ∫ c s c 2 x d x = − cot ⁡ x \int csc^2xdx = -\cot x csc2xdx=cotx
  • ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x \int \sec x \tan xdx = \sec x secxtanxdx=secx
  • ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x \int \csc x \cot xdx = -\csc x cscxcotxdx=cscx
  • ∫ d x a 2 − x 2 = sin ⁡ − 1 x a \int \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}\frac{x}{a} a2x2 dx=sin1ax(三角替换, x = sin ⁡ θ x=\sin \theta x=sinθ
  • ∫ d x a 2 + x 2 = 1 a tan ⁡ − 1 x a \int \frac{dx}{a^2+x^2} = \frac{1}{a}\tan^{-1}\frac{x}{a} a2+x2dx=a1tan1ax(三角替换, x = tan ⁡ θ x = \tan \theta x=tanθ
  • ∫ tan ⁡ x d x = − ln ⁡ ( cos ⁡ x ) \int \tan xdx = -\ln (\cos x) tanxdx=ln(cosx) tan ⁡ x = sin ⁡ x cos ⁡ x \tan x = \frac{\sin x}{\cos x} tanx=cosxsinx
  • ∫ cot ⁡ x d x = ln ⁡ ( s i n x ) \int \cot xdx = \ln (sinx) cotxdx=ln(sinx)
  • ∫ sec ⁡ x d x = ln ⁡ ( csc ⁡ x + cot ⁡ x ) \int \sec xdx = \ln (\csc x + \cot x) secxdx=ln(cscx+cotx)
  • ∫ csc ⁡ x d x = − ln ⁡ ( csc ⁡ x + cot ⁡ x ) \int \csc xdx = - \ln (\csc x + \cot x) cscxdx=ln(cscx+cotx)
  • ∫ d x x 2 − a 2 = 1 2 a ln ⁡ ( x − a x + a ) \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln(\frac{x-a}{x+a}) x2a2dx=2a1ln(x+axa)(分式分解)
  • ∫ d x a 2 − x 2 = 1 2 a ln ⁡ ( a + x a − x ) \int \frac{dx}{a^2-x^2} = \frac{1}{2a} \ln (\frac{a+x}{a-x}) a2x2dx=2a1ln(axa+x)(分式分解)
  • ∫ d x x 2 ± a 2 = ln ⁡ ( x + x 2 ± a 2 ) \int \frac{dx}{\sqrt{x^2\pm a^2}} = \ln (x + \sqrt{x^2\pm a^2}) x2±a2 dx=ln(x+x2±a2 )

积分策略

  • 简化积分的被积函数
  • 使用合适的代换/换元方式
  • 分类
    • ∫ sin ⁡ m x d x cos ⁡ n x d x , ∫ tan ⁡ m x sec ⁡ n x d x , ∫ cot ⁡ m x csc ⁡ n x d x \int \sin^mxdx \cos^nxdx,\int \tan^mx \sec^nxdx, \int \cot^mx \csc^nxdx sinmxdxcosnxdx,tanmxsecnxdx,cotmxcscnxdx形式
    • a 2 ± x 2 , x 2 ± a 2 \sqrt{a^2 \pm x^2}, \sqrt{x^2 \pm a^2} a2±x2 ,x2±a2 或上述形式的幂函数;三角替换 x = a sin ⁡ θ , x = a tan ⁡ θ , x = a sec ⁡ θ x=a\sin \theta, x = a\tan \theta, x = a \sec \theta x=asinθ,x=atanθ,x=asecθ
    • 有理函数:部分分式分解
    • 几种类型的乘积考虑分部积分法(如 ln ⁡ x , sin ⁡ − 1 x , tan ⁡ − 1 x \ln x, \sin^{-1}x, \tan^{-1}x lnx,sin1x,tan1x

定积分计算近似值

梯形法则

估计曲线下方面积,分为很多梯形,计算每个面积,求和。
∫ a b f ( x ) d x \int_a^b f(x)dx abf(x)dx,[a, b],将区间分n等份, Δ x = b − a n \Delta x = \frac{b-a}{n} Δx=nba,则 ∫ a b f ( x ) d x ≅ ( 1 2 y 0 + y 1 + . . . + y n − 1 + 1 2 y n ) Δ x \int_a^bf(x)dx \cong (\frac{1}{2}y_0 + y_1 + ... + y_{n-1} + \frac{1}{2}y_n)\Delta x abf(x)dx(21y0+y1+...+yn1+21yn)Δx

辛普森法则

适合从科学实验中观察到的孤立值,无函数表达式时,可以通过此方法取近似值。
∫ a b f ( x ) d x ≅ 1 3 ( y 0 + 4 y 1 + 2 y 2 + . . . + 4 y n − 1 + y n ) \int_a^bf(x)dx \cong \frac{1}{3}(y_0 + 4y_1 + 2y_2 + ...+ 4y_{n-1} + y_n) abf(x)dx31(y0+4y1+2y2+...+4yn1+yn)

反常积分

广义积分,异常积分,对普通积分的推广.

∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx,表示f(x)在闭区间[a,b]连续,积分上下界限a,b是有限的某个数,是普通积分。

∫ a ∞ f ( x ) d x \int_a^\infty f(x)dx af(x)dx是反常积分improper integrals,积分上限是无穷大,被积函数f(x)在[a, ∞ \infty )上连续。即从a积分到一个有限但是可变的上限t,让t逼近 ∞ \infty ,则定义为: ∫ a ∞ f ( x ) d x = lim ⁡ t − > ∞ ∫ a t f ( x ) d x \int_a^\infty f(x)dx = \lim_{t->\infty} \int_a^tf(x)dx af(x)dx=limt>atf(x)dx

如果上述极限存在,并且有一个有限值,则称广义积分是收敛的(面积是一个有限值),否则是发散的(无限值)。反常积分是一个极限值。

顺序

微积分->概率论-》线性代数

progress

252-7.8 ~ 348-10.5 书籍学习,未记录。
409~461 书籍学习 未记录
388~397 未看。
601~631 书籍学习 未记录
758~770 书籍学习
780~812

教材

入门主要教材:

  • George Simmons的Calculus With Analytic Geometry(Second Edition)
  • 《微积分(第六版)(双语教材)(高等学校数学双语教学推荐教材)》(詹姆斯·斯图尔特)

参考:

  • Morris Kline, Calculus: An Intuitive and Physical Approach (Second Edition)
  • Richard Courant, Fritz John, Introduction to Calculus and Analysis(Reprint of the 1989 edition)
  • The Fundamentals of Mathematical Analysis, Volume 1, 1st Edition, G. M. Fikhtengol’ts(中译本:菲赫金哥尔茨《数学分析原理》)
  • 陈纪修、於崇华、金路的《数学分析》、⑤Joel R. Hass, Christopher E. Heil, Maurice D. Weir ,Thomas’ calculus

深入:

  • Richard Courant, Fritz John, Introduction to Calculus and Analysis(Reprint of the 1989 edition)

中英文对照

  • derivative:导数
  • differentiated:求导、微分
  • 微积分发明者:牛顿、莱布尼兹

公式

  • sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x \sin 2x = 2 \sin x \cos x sin2x=2sinxcosx
  • V 圆锥体 = 1 3 圆柱体体积 = 1 3 π r 2 h V圆锥体=\frac{1}{3}圆柱体体积=\frac{1}{3}\pi r^2h V圆锥体=31圆柱体体积=31πr2h
  • 球体体积 = 4 3 π a 3 = 2 3 圆柱体体积 球体体积=\frac{4}{3}\pi a^3=\frac{2}{3}圆柱体体积 球体体积=34πa3=32圆柱体体积
  • 圆锥体表面积(不含底): A = π r L A = \pi rL A=πrL
  • 球体表面积: A = 4 π a 2 A = 4\pi a^2 A=4πa2
  • 沃利斯公式: π 2 = 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 . . . \frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} ... 2π=123234545676...
  • π \pi π的莱布尼兹公式: π 4 = 1 − 1 3 + 1 5 − 1 7 + . . . \frac{\pi}{4} = 1- \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ... 4π=131+5171+...
  • Σ 1 ∞ 1 n 2 = π 2 6 \Sigma_1^\infty \frac{1}{n^2} = \frac{\pi^2}{6} Σ1n21=6π2

技巧

头同尾合十、尾同头合十

个位上的两个数字相乘作积的后两位;十位上的两个数字相乘+头同或者尾同中同的这个数字作积的前两位:
44×46=2024
22×28=616(2×2+2=6,此时结果为三位数)
51×59=3009(1×9=9,则需补0,表示为09)
37×77=2849

多项式长除法

积分

  • ∫ 1 x = ln ⁡ x + c \int \frac{1}{x} = \ln x +c x1=lnx+c
  • ∫ 1 x 2 = − 1 x + c \int \frac{1}{x^2} = \frac{-1}{x} +c x21=x1+c
  • ∫ x x 2 + 1 = 1 2 ln ⁡ ( x 2 + 1 ) + c \int \frac{x}{x^2 + 1} = \frac{1}{2} \ln (x^2+1) + c x2+1x=21ln(x2+1)+c
  • ∫ 1 x 2 + 1 = tan ⁡ − 1 x + c \int \frac{1}{x^2 + 1} = \tan^{-1} x + c x2+11=tan1x+c
  • ∫ ln ⁡ x = x l n x − x + c \int\ln x = xlnx - x + c lnx=xlnxx+c

ln ⁡ ( 1 + p 2 + p ) + p − a x \ln (\sqrt{1+p^2} + p) + p - ax ln(1+p2 +p)+pax

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值