[WC2014]时空穿梭-题解

【题目地址】[IN]

题目意思见原题面。


我们首先来看一些前置知识:

  • 对于一个线段,我们知道其两个端点坐标为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),那么它上面的整点个数为 g c d ( ∣ x 1 − x 2 ∣ , ∣ y 1 − y 2 ∣ ) + 1 gcd(|x_1-x_2|,|y_1-y_2|)+1 gcd(x1x2,y1y2)+1(+1是开始的端点)。

我们很容易的将其推广到多维的情况上面。

那么我们考虑枚举坐标每维的最大差(也就是端点坐标差),那么一条直线的上的点的个数为 g c d ( Δ x i ) + 1 gcd(\Delta x_i)+1 gcd(Δxi)+1,除去端点上,其余可选点数为 g c d ( Δ x i ) − 1 gcd(\Delta x_i)-1 gcd(Δxi)1,那么我们还需选择 c − 2 c-2 c2个点,所以对于一条直线的所有方案数就为 C g c d ( Δ x i ) − 1 c − 2 C_{gcd(\Delta x_i)-1}^{c-2} Cgcd(Δxi)1c2,然后我们考虑对于一种坐标差的情况,直线有多少条,显然对于每维坐标选择的方案数就是 m i − Δ x i m_i-\Delta x_i miΔxi(不加1是因为坐标大于等于1),所以总的直线选择方案数为

∏ i n ( m i − Δ x i ) \prod\limits_i^n(m_i-\Delta x_i) in(miΔxi)

所以题目就变成了我们要求这个式子:

∑ Δ x 1 = 1 m 1 ∑ Δ x 2 = 1 m 2 ⋯ ∑ Δ x n = 1 m n C g c d ( Δ x i ) − 1 c − 2 ∏ i n ( m i − Δ x i ) \sum_{\Delta x_1=1}^{m_1}\sum_{\Delta x_2=1}^{m_2}\cdots\sum_{\Delta x_n=1}^{m_n}C_{gcd(\Delta x_i)-1}^{c-2}\prod_i^n (m_i-\Delta x_i) Δx1=1m1Δx2=1m2Δxn=1mnCgcd(Δxi)1c2in(miΔxi)

暴力求的话,复杂度非常之高,所以我们要考虑优化。

看到有gcd,一般可以想到用莫比乌斯反演的套路,我们来枚举gcd,则原式变成了:(令 m = min ⁡ ( m i ) m=\min{(m_i)} m=min(mi)
∑ g = 1 m C g − 1 c − 2 ∑ Δ x 1 = 1 m 1 g ∑ Δ x 2 = 1 m 2 g ⋯ ∑ Δ x n = 1 m n g ∏ i n ( m i − Δ x i ) [ g c d ( Δ x i ) = 1 ] \sum_{g=1}^{m}C_{g-1}^{c-2}\sum_{\Delta x_1=1}^{\frac{m_1}{g}}\sum_{\Delta x_2=1}^{\frac{m_2}{g}}\cdots\sum_{\Delta x_n=1}^{\frac{m_n}{g}}\prod_i^n (m_i-\Delta x_i)[gcd(\Delta x_i)=1] g=1mCg1c2Δx1=1gm1Δx2=1gm2Δxn=1gmnin(miΔxi)[gcd(Δxi)=1]

我们用莫比乌斯函数来代替 [ g c d ( Δ x i ) = 1 ] [gcd(\Delta x_i)=1] [gcd(Δxi)=1]则可以得到:

∑ g = 1 m C g − 1 c − 2 ∑ Δ x 1 = 1 m 1 g ∑ Δ x 2 = 1 m 2 g ⋯ ∑ Δ x n = 1 m n g ∏ i n ( m i − Δ x i g ) ∑ t ∣ g c d ( Δ x i ) μ ( t ) \sum_{g=1}^{m}C_{g-1}^{c-2}\sum_{\Delta x_1=1}^{\frac{m_1}{g}}\sum_{\Delta x_2=1}^{\frac{m_2}{g}}\cdots\sum_{\Delta x_n=1}^{\frac{m_n}{g}}\prod_i^n (m_i-\Delta x_ig)\sum_{t|gcd(\Delta x_i)}\mu(t) g=1mCg1c2Δx1=1gm1Δx2=1gm2Δxn=1gmnin(miΔxig)tgcd(Δxi)μ(t)

我们交换求和顺序,将 μ \mu μ放在前面,则可以得到:

∑ g = 1 m C g − 1 c − 2 ∑ t = 1 m g μ ( t ) ∑ Δ x i = 1 m i g t ∏ j = 1 n ( m j − Δ x j g t ) \sum_{g=1}^mC_{g-1}^{c-2}\sum_{t=1}^{\frac{m}{g}}\mu(t)\sum_{\Delta x_i=1}^{\frac{m_i}{gt}}\prod_{j=1}^n(m_j-\Delta x_jgt) g=1mCg1c2t=1gmμ(t)Δxi=1gtmij=1n(mjΔxjgt)

交换一下后面的求和顺序:

∑ g = 1 m C g − 1 c − 2 ∑ t = 1 m g μ ( t ) ∏ i = 1 n ∑ x i = 1 m i g t ( m i − Δ x i g t ) \sum_{g=1}^mC_{g-1}^{c-2}\sum_{t=1}^{\frac{m}{g}}\mu(t)\prod_{i=1}^n\sum_{x_i=1}^{\frac{m_i}{gt}}(m_i-\Delta x_igt) g=1mCg1c2t=1gmμ(t)i=1nxi=1gtmi(miΔxigt)

我们发现 :
∑ x i = 1 m i g t ( m i − Δ x i g t ) \sum_{x_i=1}^{\frac{m_i}{gt}}(m_i-\Delta x_igt) xi=1gtmi(miΔxigt)
这个可以直接用等差数列求和公式 O ( 1 ) O(1) O(1)求出,我们令:
f ( m i , g t ) = ⌊ m i g t ⌋ m i − g t ⌊ m i g t ⌋ ( ⌊ m i g t ⌋ + 1 ) 2 f(m_i,gt)= \left\lfloor\frac{m_i}{gt}\right\rfloor m_i-gt\frac{\left\lfloor\frac{m_i}{gt}\right\rfloor\left(\left\lfloor\frac{m_i}{gt}\right\rfloor+1\right)}{2} f(mi,gt)=gtmimigt2gtmi(gtmi+1)

原式就变成:

∑ g = 1 m C g − 1 c − 2 ∑ t = 1 m g μ ( t ) ∏ i = 1 n f ( m i , g t ) \sum_{g=1}^mC_{g-1}^{c-2}\sum_{t=1}^{\frac{m}{g}}\mu(t)\prod_{i=1}^n f(m_i,gt) g=1mCg1c2t=1gmμ(t)i=1nf(mi,gt)

但是此时暴力求的话复杂度还是 O ( n m 2 ) O(nm^2) O(nm2),所以我们考虑进一步优化,根据套路,我们令 h = g t h=gt h=gt然后来枚举 h h h可以得:

∑ h = 1 m ∑ g ∣ h C g − 1 c − 2 μ ( h g ) ∏ i = 1 n f ( m i , h ) \sum_{h=1}^m\sum_{g|h}C_{g-1}^{c-2}\mu\left(\frac{h}{g}\right)\prod_{i=1}^nf(m_i,h) h=1mghCg1c2μ(gh)i=1nf(mi,h)

我们显然可以枚举倍数,在 O ( m l o g m ) O(mlogm) O(mlogm)的时间里预处理出 ∑ g ∣ h C g − 1 c − 2 μ ( h g ) \sum_{g|h}C_{g-1}^{c-2}\mu\left(\frac{h}{g}\right) ghCg1c2μ(gh),然后复杂度就优化成了 O ( n m ) O(nm) O(nm),大概可以过 50 ∼ 60   p t s 50\sim 60\ pts 5060 pts,所以我们还要考虑优化。

我们看 f ( m , h ) f(m,h) f(m,h)中的 ⌊ m h ⌋ \lfloor\frac{m}{h}\rfloor hm在所有的 ( m i h ) \left(\frac{m_i}{h}\right) (hmi)中根据除法分块的理论最多只有 n m n\sqrt{m} nm 种取值,所以我们可以将其分成 n m n\sqrt{m} nm 段来求取。

而对于每一段,我们考虑这样的式子:(令 g ( h ) = ∑ g ∣ h C g − 1 c − 2 μ ( h g ) , l ( h ) = ∏ i = 1 n f ( m i , h ) g(h)=\sum_{g|h}C_{g-1}^{c-2}\mu\left(\frac{h}{g}\right),l(h)=\prod_{i=1}^nf(m_i,h) g(h)=ghCg1c2μ(gh),l(h)=i=1nf(mi,h)
∑ h = l r g ( h ) l ( h ) \sum_{h=l}^rg(h)l(h) h=lrg(h)l(h)

如果直接计算,每次计算需要 O ( n m ) O(nm) O(nm)的时间,而总共有 n m n\sqrt{m} nm 段,复杂度还是 O ( n 2 m m ) O(n^2m\sqrt{m}) O(n2mm )的,多组询问下是过不去的。

所以我们考虑进一步优化,我们可以将 l l l看成是一个关于 h h h的函数,那么将 h h h看成未知数,我们可以得到 l ( x ) = ∑ i = 0 n a i x i l(x)=\sum_{i=0}^na_ix^i l(x)=i=0naixi,那么带回原式则可以得到:

∑ h = l r g ( h ) ∑ i = 0 n a i h i \sum_{h=l}^rg(h)\sum_{i=0}^na_ih^i h=lrg(h)i=0naihi

交换一下求和顺序可以得到:

∑ i = 0 n a i ∑ h = l r g ( h ) h i \sum_{i=0}^na_i\sum_{h=l}^rg(h)h^i i=0naih=lrg(h)hi

我们同样可以预处理出 g ( h ) h i g(h)h^i g(h)hi前缀和,那么每次计算的复杂度就是 O ( n ) O(n) O(n)的了,求系数 a i a_i ai我们可以考虑将 f f f暴力乘起来,化简便可以得到,复杂度为 O ( n 2 ) O(n^2) O(n2)(你要用 F F T FFT FFT优化也可以,不过太麻烦了)。所以此时每次询问的复杂度就变成了 O ( n 3 m ) O(n^3\sqrt{m}) O(n3m )了,就可以过了。

总的复杂度为 O ( n m c + c m l o g m + T n 3 m ) O(nmc+cmlogm+Tn^3\sqrt{m}) O(nmc+cmlogm+Tn3m )

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf=2e9;
const int M=25,Mod=10007,U=1110,W=16;
int n[U],c[U],T,m[U][W],Maxv,Maxc;
const int N=1e5+20;
bool vis[N];
int prime[N],mu[N],cnt;
int g[M][N],f[M][W][N],C[N][M];
void init(){
    C[0][0]=1;
    for(int i=1;i<=Maxv;i++){
        C[i][0]=1;if(i<=Maxc-2)C[i][i]=1;
        for(int j=1;j<min(Maxc-1,i);j++){
            C[i][j]=(C[i-1][j]+C[i-1][j-1])%Mod;
        }
    }	mu[1]=1;
    for(int i=2;i<=Maxv;i++){
        if(!vis[i]){
            prime[++cnt]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=cnt&&i*prime[j]<=Maxv;j++){
            vis[i*prime[j]]=1;
            if(!(i%prime[j])){
                break;
            }	mu[i*prime[j]]=-mu[i];
        }
    }
    for(int cv=2;cv<=Maxc;cv++){
        for(int i=1;i<=Maxv;i++){
            for(int j=i,k=1;j<=Maxv;j+=i,++k){
                (g[cv][j]+=C[i-1][cv-2]*mu[k]%Mod)%=Mod;
                if(g[cv][j]<0)g[cv][j]+=Mod;
            }
        }
    }
    for(int hv=1;hv<=Maxv;hv++){
        for(int cv=1;cv<=Maxc;cv++){
            for(int j=0,x=1;j<=11;j++){
                f[cv][j][hv]=(g[cv][hv]*x%Mod+f[cv][j][hv-1])%Mod;
                x=(x*hv)%Mod;
                if(f[cv][j][hv]<0)f[cv][j][hv]+=Mod;
            }
        }
    }
} 
int A[W];
void Pre(int h,int *mv,int nn){
    int x1,x0,t;memset(A,0,sizeof(A));A[0]=1;
    for(int i=1;i<=nn;i++){
        t=(mv[i]/h);
        x1=(-((1ll*t*(t+1))>>1))%Mod;
        x0=(1ll*mv[i]*t)%Mod;
        for(int j=nn;j>=1;j--){
            A[j]=(A[j]*x0%Mod+A[j-1]*x1%Mod)%Mod;
            if(A[j]<0)A[j]+=Mod;
        }	A[0]=(A[0]*x0)%Mod;if(A[0]<0)A[0]+=Mod;
    }
}
int Minv,ans;
int main(){
    scanf("%d",&T);
    for(int i=1;i<=T;i++){
        scanf("%d%d",&n[i],&c[i]);if(Maxc<c[i])Maxc=c[i];
        for(int j=1;j<=n[i];j++){
            scanf("%d",&m[i][j]);if(Maxv<m[i][j])Maxv=m[i][j];
        }
    }
    init();
    for(int w=1;w<=T;w++){
        Minv=inf;ans=0;
        for(int i=1;i<=n[w];i++)if(m[w][i]<Minv)Minv=m[w][i];
        for(int i=1,j;i<=Minv;i=j+1){
            j=Minv;for(int k=1;k<=n[w];k++)j=min(j,m[w][k]/(m[w][k]/i));
            Pre(i,m[w],n[w]);for(int k=0;k<=n[w];k++) ans=(ans+A[k]*(f[c[w]][k][j]-f[c[w]][k][i-1])%Mod)%Mod;
            if(ans<0)ans+=Mod;
        }	printf("%d\n",(ans%Mod+Mod)%Mod);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VictoryCzt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值