石子合并与果子合并:区间动态规划和贪心

本文通过实例分析了石子合并问题(区间DP)和果子合并问题(利用贪心策略),介绍了如何通过递推和动态规划求解最小代价,以及如何将果子合并问题转化为最短WPL问题并使用优先队列求解。
摘要由CSDN通过智能技术生成

  果子合并是如何将一堆果子合并起来所消耗体力最少,石子合并也是将一堆石子合并起来质量最小,但不同的是 石子合并只能相邻的两个合并 。本篇通过讲解这两个相似例题,来学习区间dp与贪心。

目录

石子合并:

 题目:

思路:

代码:

果子合并

题目:

思路:

代码:


石子合并:

 题目:

设有 N 堆石子排成一排,其编号为 1,2,3,…,N1,2,3,…,。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 44 堆石子分别为 1 3 5 2, 我们可以先合并 1、21、2 堆,代价为 44,得到 4 5 2, 又合并 1、21、2 堆,代价为 99,得到 9 2 ,再合并得到 1111,总代价为 4+9+11=244+9+11=24;

如果第二步是先合并 2、32、3 堆,则代价为 77,得到 4 7,最后一次合并代价为 1111,总代价为 4+7+11=224+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

思路:

  本题为区间合并经典例题,平时思路为,如何将两个两个石子分别合并(递归,从上向下),而在区间合并中, 应从结尾出发,将整堆石子分为两堆,再对这两堆继续分,直到分为一个个的石子(递推,从下向上) 

在区间dp遍历时, 先遍历区间长度,再遍历区间左节点 

代码:

#include<iostream>
#include<cmath>
using namespace std;

int n;
const int N = 310;
int s[N];//前缀和
int f[N][N];

int main(){
    cin >> n;
    for(int i = 1;i <= n;i++){
        cin >> s[i];
        s[i] += s[i - 1];
    }
    
    for(int len = 2;len <= n;len++){
        for(int i = 1;i + len - 1 <= n;i++){
            int l = i,r = i + len - 1;
            f[l][r] = 1e8;
            for(int k = l;k < r;k++)
                f[l][r] = min(f[l][r],f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
        }
    }
    cout << f[1][n];
    return 0;
}

果子合并

题目:

现在有n堆果子,第i堆有ai个果子。现在要把这些果子合并成一堆,每次合并的代价是两堆果子的总果子数。求合并所有果子的最小代价。

思路:

本题为哈夫曼树的应用,转换为求最短WPL(带权路径长度),运用贪心的思想。

  每次选择价值最小和次小的那两个进行合并,合并成新的果子放进果堆中,然后又在果堆中选择最小的和次小的进行合并,这样下来,合并所有果子所花费的代价是最小的。

优先队列 来实现这个过程

代码:

#include <iostream>
#include <math.h>
#include <queue>
using namespace std;
int main()
{
    int t,n,a;
    scanf("%d",&t);
    while(t--)
    {
        priority_queue<int,vector<int>,greater<int> >q;//优先队列,数值小的优先
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a);
            q.push(a);
        }
        int ans=0,temp;
        while(q.size()>=2)//果堆中只有一个果子的时候合并就完成了
        {
            temp=0;
            temp+=q.top(),q.pop();
            temp+=q.top(),q.pop();//每次去优先队列队首的两个,因为他们是代价最小和次小的
            ans+=temp;
            q.push(temp);
        }
        printf("%d\n",ans);
    }
    return 0;
}

以上是本文全部内容,如果对你有帮助点个赞再走吧~  ₍˄·͈༝·͈˄*₎◞ ̑̑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值