【leetcode】jump-game-ii

题目描述

给出一个非负整数数组,你最初在数组第一个元素的位置,数组中的元素代表你在这个位置可以跳跃的最大长度,你的目标是用最少的跳跃次数来到达数组的最后一个元素的位置。例如,给出数组 A =[2,3,1,1,4],最少需要两次才能跳跃到数组最后一个元素的位置。(从数组下标为0的位置跳长度1到达下标1的位置,然后跳长度3到数组最后一个元素的位置)

Given an array of non-negative integers, you are initially positioned at the first index of the array.Each element in the array represents your maximum jump length at that position.Your goal is to reach the last index in the minimum number of jumps.

For example:Given array A =[2,3,1,1,4].The minimum number of jumps to reach the last index is2. (Jump1step from index 0 to 1, then 3 steps to the last index.)

问题分析

       从某一个位置i起跳,最远可以跳到位置A[i]+i,那么到位置i+1~i+A[i]中的任意位置只需要跳一步,只需要求解一个位置,满足跳到该位置后起跳可以跳到最远距离。该问题可以划分为一个个子问题,通过获取子问题的最优解,求解最远距离,获取整体最优解。

算法分析

该问题可以通过贪心思想得到整体最优解。通过求解局部最优解即求解局部跳最远距离,获得最少跳跃次数。对于位置i,可以跳跃到i+A[i],定义i+A[i]为cur。那么在i+1到cur范围内,求解该范围内起跳所能跳的最大值。通过last变量记录跳到最远距离,与当前位置进行比较,如果小于当前位置,那么置为当前所能跳的最远距离cur,跳跃次数加1。算法的时间复杂度为O(n)。

编码实现

public class Solution {
    public int jump(int[] A) {
        int cur=0;  
        int last=0;  
        int step=0; 
        for(int i=0; i<A.length && cur>=i; i++)
        {
            if(i>last)
            {
                last=cur;
                step++;
            }
            cur =cur>(A[i]+i)?cur:(A[i]+i);
        }
        return step;
	}
}

 

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值