逻辑回归算法原理推导

Logistic Regression

  • 目的:分类还是回归?经典的二分类算法!
  • 机器学习算法选择:先逻辑回归再用复杂的,能简单还是用简单的
  • 逻辑回归的决策边界:可以是非线性的
Sigmoid函数
  • 公式: g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
  • 自变量取值为任意实数,值域为[0,1]
  • 解释:将任意的输入映射到看[0,1]区间,我们在线性回归中可以得到一个预测值,再将该值映射到Sigmoid函数中,这样就完成了由值到概率的转换,也就是分类任务
    在这里插入图片描述
  • 预测函数: h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}} hθ(x)=g(θTx)=1+eθTx1
    其中 θ 0 + θ 1 x 1 + , . . . , + θ n x n = ∑ i = 1 n θ i x i = θ T x \theta_0+\theta_1x_1+,...,+\theta_nx_n=\sum_{i=1}^n\theta_ix_i=\theta^Tx θ0+θ1x1+,...,+θnxn=i=1nθixi=θTx
    在这里插入图片描述
  • 分类任务: P ( y = 1 ∣ x ; θ ) = h θ ( x ) P(y=1|x;\theta)=h_\theta(x) P(y=1x;θ)=hθ(x) P ( y = 0 ∣ x ; θ ) = 1 − h θ ( x ) P(y=0|x;\theta)=1-h_\theta(x) P(y=0x;θ)=1hθ(x)
    • 整合: P ( y ∣ x ; θ ) = ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y P(y|x;\theta)=(h_\theta(x))^y(1-h_\theta(x))^{1-y} P(yx;θ)=(hθ(x))y(1hθ(x))1y
  • 解释:对于二分类任务(0,1),整合后y取0只保留 ( 1 − h θ ( x ) ) 1 − y (1-h_\theta(x))^{1-y} (1hθ(x))1y,y取1只保留 ( h θ ( x ) ) y (h_\theta(x))^y (hθ(x))y
Logistic Regression
  • 似然函数: L ( θ ) = ∏ i = 1 m P ( y i ∣ x i ; θ ) = ∏ i = 1 m ( h θ ( x i ) ) y i ( 1 − h θ ( x i ) ) 1 − y L(\theta)=\prod_{i=1}^mP(y_i|x_i;\theta)=\prod_{i=1}^m(h_\theta(x_i))^{y^i}(1-h_\theta(x_i))^{1-y} L(θ)=i=1mP(yixi;θ)=i=1m(hθ(xi))yi(1hθ(xi))1y

  • 对数似然: l ( θ ) = log ⁡ L ( θ ) = ∑ i = 1 m ( y i log ⁡ h θ ( x i ) + ( 1 − y i ) log ⁡ ( 1 − h θ ( x i ) ) ) l(\theta)=\log L(\theta)=\sum_{i=1}^m(y_i\log h_\theta(x_i)+(1-y_i)\log(1-h_\theta(x_i))) l(θ)=logL(θ)=i=1m(yiloghθ(xi)+(1yi)log(1hθ(xi)))

  • 此时应用梯度上升求最大值,引入 J ( θ ) = − 1 m l ( θ ) J(\theta)=-\frac{1}{m}l(\theta) J(θ)=m1l(θ)转换为梯度下降任务
    在这里插入图片描述

  • 参数更新: θ j : θ j − α 1 m ∑ i = 1 m ( h θ ( x i ) − y i ) x i j \theta_j:\theta_j-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x_i)-y_i)x_i^j θj:θjαm1i=1m(hθ(xi)yi)xij

  • 多分类的softmax: h θ ( x i ) = [ p ( y i = 1 ∣ x i ; θ ) p ( y i = 2 ∣ x i ; θ ) . . . p ( y i = k ∣ x i ; θ ) ] = 1 ∑ j = 1 k e j T x i [ e θ 1 T x i e θ 2 T x i . . . e θ k T x i ] h_\theta(x^i)= \left[ \begin{matrix} p(y^i=1|x^i;\theta) \\ p(y^i=2|x^i;\theta) \\ . \\ . \\ . \\ p(y^i=k|x^i;\theta) \end{matrix} \right] =\frac{1}{\sum_{j=1}^ke_j^{Tx^i}} \left[ \begin{matrix} e^{\theta_1^Tx^i} \\ e^{\theta_2^Tx^i} \\ . \\ . \\ . \\ e^{\theta_k^Tx^i} \end{matrix} \right] hθ(xi)=p(yi=1xi;θ)p(yi=2xi;θ)...p(yi=kxi;θ)=j=1kejTxi1eθ1Txieθ2Txi...eθkTxi

  • 总结:逻辑回归真的很好很好用!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值