PTA 7-226 sdut-C语言实验-矩阵输出(数组移位)

文章详细描述了一个C语言程序,用于处理整数输入,生成并打印具有规律的N行矩阵。
摘要由CSDN通过智能技术生成

输入N个整数,输出由这些整数组成的n行矩阵。

输入格式:

第一行输入一个正整数N(N<=20),表示后面要输入的整数个数。
下面依次输入N个整数。

输出格式:

以输入的整数为基础,输出有规律的N行数据。

输入样例:

在这里给出一组输入。例如:

5
3 6 2 5 8

输出样例:

在这里给出相应的输出。例如:

3 6 2 5 8
8 3 6 2 5
5 8 3 6 2
2 5 8 3 6
6 2 5 8 3
#include <stdio.h>
void print(int arr[],int N)
{
    for(int i=0;i<N;i++)
    {
        if(i==N-1)
            printf("%d",arr[i]);
        else
        printf("%d ",arr[i]);
    }
    printf("\n");
}
int main()
{
    int N,cnt;
    int arr[21];
    scanf("%d",&N);
    for(int i=0;i<N;i++)
        scanf("%d",&arr[i]);
    // 第一次(直接调用打印)
    print(arr,N);

    cnt=N-1;// 次数
    while(cnt--)
    {
        // 将最后一个数字提前
        int temp=arr[N-1];
        for(int i=N-1;i>0;i--)
        {
             arr[i]=arr[i-1];
        }
        arr[0]=temp;
        // 调用打印
        print(arr,N);
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值