搜索引擎数据源爬取——python scrapy

我选取的是爬取百度知道的html 作为我的搜索源数据,目前先打算做网页标题的搜索,选用了 python 的 scrapy 库来对网页进行爬取,爬取网页的标题,url,以及html,用sqlist3来对爬取的数据源进行管理。

爬取的过程是一个深度优先的过程,设定四个起始 url ,然后维护一个数据库,数据库中有两个表,一个 infoLib,其中存储了爬取的主要信息:标题,url ,html;另一个表为urlLib,存储已经爬取的url,是一个辅助表,在我们爬取每个网页前,需要先判断该网页是否已爬过(是否存在urlLib中)。在数据存储的过程中,使用了SQL的少量语法,由于我之前学过 mysql ,这块处理起来比较驾轻就熟。

深度优先的网页爬取方案是:给定初始 url,爬取这个网页中所有 url,继续对网页中的 url 递归爬取。代码逐段解析在下面,方便自己以后回顾。

1.建一个 scrapy 工程:

关于建工程,可以参看这个scrapy入门教程,通过运行:

scrapy startproject ***


在当前目录下建一个scrapy 的项目,然后在 spiders 的子目录下建立一个 .py文件,该文件即是爬虫的主要文件,注意:其中该文件的名字不能与该工程的名字相同,否则,之后调用跑这个爬虫的时候将会出现错误,见ImportError

2.具体写.py文件:

import scrapy 
from scrapy import Request
import sqlite3

class rsSpider(scrapy.spiders.Spider):        #该类继承自 scrapy 中的 spider
    name = "zhidao"                           #将该爬虫命名为 “知道”,在执行爬虫时对应指令将为: scrapy crawl zhidao
    #download_delay = 1                       #只是用于控制爬虫速度的,1s/次,可以用来对付反爬虫
    allowed_domains = ["zhidao.baidu.com"]    #允许爬取的作用域
    url_first = 'http://zhidao.baidu.com/question/'   #用于之后解析域名用的短字符串
    start_urls = ["http://zhidao.baidu.com/question/647795152324593805.html", #python
                  "http://zhidao.baidu.com/question/23976256.html", #database
                  "http://zhidao.baidu.com/question/336615223.html", #C++
                  "http://zhidao.baidu.com/question/251232779.html", #operator system
                  "http://zhidao.baidu.com/question/137965104.html"  #Unix programing
                  ] #定义初始的 url ,有五类知道起始网页
    
    #add database
    connDataBase = sqlite3.connect("zhidao.db")  #连接到数据库“zhidao.db”
    cDataBase = connDataBase.cursor()            #设置定位指针
    cDataBase.execute('''CREATE TABLE IF NOT EXISTS infoLib           
        (id INTEGER PRIMARY KEY AUTOINCREMENT,name text,url text,html text)''')  
#通过定位指针操作数据库,若zhidao.db中 infoLib表不存在,则建立该表,其中主键是自增的 id(用于引擎的docId),下一列是文章的标题,然后是url,最后是html
    
    #url dataBase
    cDataBase.execute('''CREATE TABLE IF NOT EXISTS urlLib
        (url text PRIMARY KEY)''')
#通过定位指针操作数据库,若zhidao.db中urlLib表不存在,则建立该表,其中只存了 url,保存已经爬过的url,之所以再建一个表,是猜测表的主键应该使用哈希表存储的,查询速度较快,此处其实也可以用一个外键将两个表关联起来


2. .py文件中的parse函数:

.py文件中的parse函数将具体处理url返回的 response,进行解析,具体代码中说明:

def parse(self,response):
        pageName = response.xpath('//title/text()').extract()[0]          #解析爬取网页中的名称
        pageUrl = response.xpath("//head/link").re('href="(.*?)"')[0]     #解析爬取网页的 url,并不是直接使用函数获取,那样会夹杂乱码  
        pageHtml = response.xpath("//html").extract()[0]                  #获取网页html
        
        # judge whether pageUrl in cUrl
        if pageUrl in self.start_urls:                                    
	#若当前url 是 start_url 中以一员。进行该判断的原因是,我们对重复的 start_url 中的网址将仍然进行爬取,而对非 start_url 中的曾经爬过的网页将不再爬取
            self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(pageUrl,))
            lines = self.cDataBase.fetchall()
            if len(lines):               #若当前Url已经爬过
                pass                     #则不再在数据库中添加信息,只是由其为跟继续往下爬
            else:                        #否则,将信息爬入数据库
                 self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
                 self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
        else:     #此时进入的非 url 网页一定是没有爬取过的(因为深入start_url之后的网页都会先进行判断,在爬取,在下面的for循环中判断)
            self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
            self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
        
        self.connDataBase.commit()   #保存数据库的更新
        
        print "-----------------------------------------------" #输出提示信息,没啥用
        

        
        for sel in response.xpath('//ul/li/a').re('href="(/question/.*?.html)'):  #抓出所有该网页的延伸网页,进行判断并对未爬过的网页进行爬取
            sel = "http://zhidao.baidu.com" + sel                                 #解析出延伸网页的url
            self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(sel,)) #判断该网页是否已在数据库中
            lines = self.cDataBase.fetchall()
            if len(lines) == 0:                                                   #若不在,则对其继续进行爬取
                yield Request(url = sel, callback=self.parse)


展开阅读全文

没有更多推荐了,返回首页