artzers的专栏

致力于高性能数据分析、机器学习

排序:
默认
按更新时间
按访问量

[转]通俗理解卡尔曼滤波及其算法实现(实例解析)

1.简介(Brief Introduction)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,...

2018-05-07 10:41:54

阅读数:85

评论数:0

【机器学习】C++与OpenCV、Tensorflow-python联合调用

  上一篇我介绍了C++调用Python的入门方法。这一篇我讲述C++与OpenCV、Tensorflow-python联合调用的一次成功的实验过程。   C++通过python调用tensorflow,比调用C++版本的tensorflow的优势在于:tensorflow环境依赖python环...

2018-04-20 21:43:27

阅读数:188

评论数:1

【机器学习】C++调用Python3教程

背景   实际项目中我用的都是C++语言,因为涉及到高性能计算,所以其他听起来牛逼的语言只能用来打下手。现在遇到的一个项目,其深度学习模块是用python语言编写的,现在很多深度学习库都提供了python支持,但是很少有C++支持,就算有C++支持,在windows上编译也有一大堆问题(你说普通...

2018-04-20 13:35:54

阅读数:79

评论数:0

【图像处理】HDF5 C++编程简介

HDF5是一种科学数据格式,其特点是可以将不同类型的数据集整合保存到一个文件,并分别打上标签、注释。相比旧版的HDF格式,HDF5能支持大于4GB的文件读写;HDF5在数据集的基础上增加包Group,类似文件夹。这使得HDF5文件内部像普通的文件系统一样,便于数据的整合管理。

2017-12-27 20:48:42

阅读数:568

评论数:0

【机器学习】高斯分布为什么普遍和常用?

似然函数到高斯分布为了得到精确值,我们需要进行多次测量,测量值大部分对称分布在真实值两侧附近。设测量期望为θ\theta,误差为ei=xi−θe_i=x_i-\theta,期望为0,误差分布满足什么规律呢?

2017-12-26 20:41:29

阅读数:1532

评论数:0

【图像处理】VTK二维图像标记bug修正

实现始终面向用户的二维图像表示。

2017-07-11 20:20:19

阅读数:258

评论数:0

【机器学习】Tensorflow概率编程:线性混合模型

线性模型是我们最常见到的、最理想的数学模型,基本的线性模型是数据科学入门的基本案例。然而现实生活中的线性问题,很大几率不适用于基本的线性模型,需要使用线性混合模型来描述。Tensorflow edward提供对这类问题的解决方案。

2017-07-06 17:38:49

阅读数:812

评论数:0

【机器学习】Tensorflow概率编程: 贝叶斯线性回归、变分贝叶斯与黑盒变分推断

我们首先看看Tensorflow概率编程最简单的实例:贝叶斯线性回归。 以及背后的数学知识:变分贝叶斯和黑盒推断。

2017-06-30 23:46:37

阅读数:1953

评论数:1

【C++】More C++ 模板推导

进入C++11时代,大部分流行的库都支持了C++11的新特性。C++11的新特性虽然有时候被诟病为语法糖,但是确实对开发很有助力,甚至有时候跟脚本语言的简洁度有的一拼了。其中自动模板推导是C++11的惊艳功能之一,如果仅仅知道auto和decltype是不够的。以下笔记均以vs2013为准。

2017-06-29 14:08:31

阅读数:315

评论数:0

【机器学习】Tensorflow:概率编程初步印象

谷歌对Tensorflow的定位是机器学习库而不仅仅是深度学习库。随着Edward项目的开展,Tensorflow涉足了概率编程领域,与stan、pymc展开了竞争,大大扩展了应用范围。现在来看看基于Tensorflow的概率编程的一些初步知识笔记。

2017-06-21 23:50:30

阅读数:948

评论数:0

【高性能】大型分布式项目笔记

人工智能和大数据分析是当代能创造大量价值的学科。人工智能和大数据分析都离不开大型分布式项目。大型项目里面的技术非常多,相关书籍瀚如烟海,不过原理、原则和核心思想都是相通的,学习这些知识对于应用人工智能和大数据分析,启发新思想有帮助。简单记录一下学习的一些重要思想和原则。

2017-06-19 14:01:36

阅读数:410

评论数:0

【机器学习】Bregman分离算法推导

Bregman分离算法比Bregman迭代算法更简单、更有效。

2017-05-20 11:49:07

阅读数:747

评论数:0

【机器学习】Bregman迭代算法以及证明

Bregman系列算法是近几年在图像处理和压缩感知领域异军突起的算法,能够更好地从现有数据中还原真实目标结果。

2017-05-06 01:14:40

阅读数:1509

评论数:1

【图像处理】Tensorflow:简易超分辨重建与坑

超分辨重建是图像复原领域的一大热点,能在硬件有限的情况下最大还原原始场景的信号,在天文探索、显微成像等领域有重要作用。成像设备对物体成像时,由于距离较远,成像会模糊,可以类比多尺度高斯滤波;受限于成像机能,成像像素达不到最理想条件,可类比为对原始像进行一个下采样。超分辨重建就是要在这种条件下复原原...

2017-03-31 10:32:55

阅读数:3418

评论数:0

【机器学习】Tensorflow:tSNE数据非线性降维

深度学习巨头之一的Hinton大神在数据降维领域有一篇经典论文Visualizing Data using t-SNE。该方法是流形(非线性)数据降维的经典,从发表至今鲜有新的降维方法能全面超越。该方法缺点是计算复杂度大,一般推荐先线性降维然后再用tSNE降维。python sklearn有相应的...

2017-03-01 00:57:37

阅读数:7933

评论数:2

【机器学习】Tensorflow:理解和实现快速风格化图像fast neural style

Neural Style开辟了计算机与艺术的道路,可以将照片风格化为名家大师的画风。然而这种方法即使使用GPU也要花上几十分钟。Fast Neural Style则启用另外一种思路来快速构建风格化图像,在笔记本CPU上十几秒就可以风格化一张图片。我们来看看这是什么原理。

2017-02-23 11:20:18

阅读数:10815

评论数:7

【机器学习】tensorflow:HMM隐状态链的一种最优化求解方法

隐马尔科夫模型(HMM)有很多讲解,这里我推荐这篇文章:一文搞懂HMM(隐马尔可夫模型)。HMM有三种核心问题:1、给定隐状态链、转移矩阵、发射矩阵,求状态链发生概率2、给定状态链求转移矩阵和发射矩阵3、给定状态链、转移矩阵、发射矩阵,求隐状态链。三类问题分别对应前向-后向算法、最大熵算法、维特比...

2017-02-21 10:27:34

阅读数:3004

评论数:0

【机器学习】tensorflow: GPU求解带核函数的SVM二分类支持向量机

SVM本身是一个最优化问题,因此理所当然可以用简单的最优化方法来求解,比如SGD。2007年pegasos就发表了一篇文章讲述简单的求解SVM最优化的问题。其求解形式简单,但是并没有解决核函数计算量巨大的问题。这里给出了一个tensorflow的带核函数的SVM的解法,使用GPU加速,并且支持在线...

2017-02-16 10:11:50

阅读数:7795

评论数:9

【机器学习】tensorflow: 稀疏自编码

21世纪之后,数学家证明了我们获取的很多数据,可以分解为空间中少数几个基的组合,且组合系数很多为0;亦或者说,大部分数据的主要内容可以由少数几个空间基组成。这就是数据的稀疏特征,是压缩感知的基础。基于这个原理诞生了数据压缩方法,检测方法。这些方法很多都基于最优化理论,在大数据处理上,相比传统的方法...

2017-02-14 11:01:24

阅读数:2316

评论数:0

【机器学习】tensorflow:图像空间域逆滤波初步

相比上两篇文章的逆滤波解法,tensorflow的最优化解法更加高效、简明,往往构建出滤波最优化公式就可以让tensorflow自动最优化,逆向得到目标逆滤波图像。tensorflow逆滤波的实现原理可以参考【图像处理】时域最小二乘逆滤波的最优化快速解法with tf.device('/gpu:0...

2017-02-14 09:38:37

阅读数:2440

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭