题目 3218 ⭐零食采购⭐【数理基础】蓝桥杯2024年第十五届省赛

小蓝准备去星际旅行,出发前想在本星系采购一些零食,星系内有 nnn 颗星球,由 n−1n − 1n1 条航路连接为连通图,第 iii 颗星球卖第 cic_ici 种零食特产。小蓝想出了 qqq 个采购方案,第 iii 个方案的起点为星球 sis_isi ,终点为星球 tit_iti ,对于每种采购方案,小蓝将从起点走最短的航路到终点,并且可以购买所有经过的星球上的零食(包括起点终点),请计算每种采购方案最多能买多少种不同的零食。

解决思路:

  • 树的性质:
    • 星系中的星球和航路构成了一棵树,树中任意两个节点之间有且仅有一条路径。
    • 最短路径就是树中两个节点之间的唯一路径。
  • 核心问题:
    • 对于每个查询 (s,t)(s, t)(s,t),需要找到从 sssttt 的路径,并统计路径上所有节点的零食种类数。
  • 关键技术:
    • 最近公共祖先(LCA):用于快速找到两个节点的最近公共祖先,从而确定路径。
    • 路径遍历:从 sssttt 分别向上遍历到 LCA,收集路径上的零食种类。
    • 集合去重:使用集合(如 std::unordered_set)存储零食种类,确保统计结果不重复。

实现步骤:

要解决这个问题,我们可以使用最近公共祖先(LCA)和路径查询的方法。具体步骤如下:

  • 树的表示:由于星系内的星球和航路构成了一棵连通树,我们可以用邻接表来表示这棵树。

  • 预处理:

    • 使用深度优先搜索(DFS)或广度优先搜索(BFS)来预处理每个节点的深度和父节点。
    • 使用二进制提升法(Binary Lifting)来预处理每个节点的祖先信息,以便快速查询LCA。
  • 路径查询:

    • 对于每个查询 (s, t),首先找到它们的LCA。
    • 然后从 s 到 LCA 和从 t 到 LCA 的路径上收集所有不同的零食种类。
  • 统计不同零食种类:

    • 使用一个集合(如 std::unordered_set)来存储路径上的零食种类,最后返回集合的大小。

以下是C++代码实现:

#include <iostream>
#include <vector>
#include <unordered_set>
#include <queue>
#include <cmath>

using namespace std;

const int MAXN = 1e5 + 5;
const int LOG = 20;

vector<int> adj[MAXN];
int depth[MAXN];
int up[MAXN][LOG];
int c[MAXN];

void dfs(int v, int p) {
    up[v][0] = p;
    for (int i = 1; i < LOG; ++i) {
        up[v][i] = up[up[v][i - 1]][i - 1];
    }
    for (int u : adj[v]) {
        if (u != p) {
            depth[u] = depth[v] + 1;
            dfs(u, v);
        }
    }
}

int lca(int u, int v) {
    if (depth[u] < depth[v]) swap(u, v);
    for (int i = LOG - 1; i >= 0; --i) {
        if (depth[u] - (1 << i) >= depth[v]) {
            u = up[u][i];
        }
    }
    if (u == v) return u;
    for (int i = LOG - 1; i >= 0; --i) {
        if (up[u][i] != up[v][i]) {
            u = up[u][i];
            v = up[v][i];
        }
    }
    return up[u][0];
}

unordered_set<int> getPath(int u, int v) {
    int ancestor = lca(u, v);
    unordered_set<int> snacks;
    while (u != ancestor) {
        snacks.insert(c[u]);
        u = up[u][0];
    }
    while (v != ancestor) {
        snacks.insert(c[v]);
        v = up[v][0];
    }
    snacks.insert(c[ancestor]);
    return snacks;
}

int main() {
    int n, q;
    cin >> n >> q;
    for (int i = 1; i <= n; ++i) {
        cin >> c[i];
    }
    for (int i = 1; i < n; ++i) {
        int u, v;
        cin >> u >> v;
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    dfs(1, 1);
    while (q--) {
        int s, t;
        cin >> s >> t;
        unordered_set<int> snacks = getPath(s, t);
        cout << snacks.size() << endl;
    }
    return 0;
}

代码说明:

  • DFS预处理:dfs 函数用于预处理每个节点的深度和祖先信息。
  • LCA查询:lca 函数用于查询两个节点的最近公共祖先。
  • 路径查询:getPath 函数用于获取从 uv 的路径上的所有零食种类。
  • 主函数:读取输入数据,构建树,处理查询,并输出结果。

复杂度分析:

  • 预处理:
    • DFS 遍历:O(n)O(n)O(n)
    • 二进制提升预处理:O(n log n)O(n\,log\,n)O(nlogn)
  • 查询:
    • LCA 查询:O(log n)O(log\,n)O(logn)
    • 路径遍历:O(k)O(k)O(k),其中 kkk 是路径长度。
    • 总查询复杂度:O(q∗(logn+k))O(q * (log n + k))O(q(logn+k))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值