音乐来自乐器,乐器产生于制造,而制造需要数理逻辑。
在20世纪末,我国就已经形成了较为完整的乐器工业生产体系,基本可以加工世界上所有大类乐器,门类齐全,品种众多。其中,在弦乐器(例如钢琴、小提琴、吉他、二胡等)的生产过程中,音板是决定乐器音色质量的重要部件。由于弦的振动所辐射的声能量效率很低,因此琴弦通常需要带动音板振动,以提高其声能量辐射效率。音板是连续弹性薄板,受到琴弦的激励后会产生更多的振动模态,从而产生更丰富美妙的谐音。
弹性板的振动模态包含振动频率、振型等,分别是弹性算子(偏微分算子)的特征值的虚部和相应的特征向量。音板的振动模态与其几何形状和厚度,所选材质的密度、杨氏模量、剪切模量、泊松比等密切相关。本题聚焦于乐器音板的振动模态研究,要求参赛队收集常见乐器制作所用木材、金属、或某类型复合材料和新型材料的振动力学参数资料,建立数学模型,研究如下问题:
问题1 考虑具有自由边界条件的方形均质音板,建立音板的振动数学模型,计算并对比大小一致材质不同的音板频率在2000 Hz范围内相应振动模态的频率和振型:云杉木材,某类型常用金属、某类型高新复合材料和新型材料。
问题2 选择一种特定的云杉木材来制作一块厚度非均匀,