集合(极其的蒻)

集合(定义)

对于面向对象的语言,一般我们在编程的时候自然需要存储对象的容器,数组可以满足这个需求,但是数组初始化时长度是固定的,但是我们往往需要一个长度可变化的容器,因此,集合出现了,它的长度是可以变化的。

二、集合与数组的区别

(1)长度区别:集合长度可变,数组长度不可变

(2)内容区别:集合可存储不同类型元素,数组存储只可单一类型元素

(3)元素区别:集合只能存储引用类型元素,数组可存储引用类型,也可存储基本类型

集合的特点

1.集合是具有某种特定性质,具体的或抽象的对象汇集的总体

2.集合的表示有枚举法和描述法

3.集合有三个性质——确定性,无序性,互异性

4.集合S的所有元素都属于集合T,称S是T的子集

5.如果S是T的子集,T中存在至少一个元素不属于S,称S是T的真子集

6.空集是一个元素都没有的集合,它是所有集合的子集,是所有非空集合的真子集

7.区间一般是实数的子集

8.集合的运算有四种——并、交、差、补

9.集合运算满足交换律、结合律、分配律和对偶律

10.由n个非负整数的元素构成的集合称为有限集,不是有限集的集合称为无限集

11.若无限集的元素可按某种规则排成一列,则称该集合是可列集

12.任一无限集包含可列子集,无限集不一定是可列集

13.可列个可列集之并也是可列集

14.有理数集合Q是可列集

亲戚

题目背景

若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。

题目描述

规定: x x x y y y 是亲戚, y y y z z z 是亲戚,那么 x x x z z z 也是亲戚。如果 x x x y y y 是亲戚,那么 x x x 的亲戚都是 y y y 的亲戚, y y y 的亲戚也都是 x x x 的亲戚。

输入格式

第一行:三个整数 n , m , p n,m,p n,m,p,( n , m , p ≤ 5000 n,m,p \le 5000 n,m,p5000),分别表示有 n n n 个人, m m m 个亲戚关系,询问 p p p 对亲戚关系。

以下 m m m 行:每行两个数 M i M_i Mi M j M_j Mj 1 ≤ M i ,   M j ≤ N 1 \le M_i,~M_j\le N 1Mi, MjN,表示 M i M_i Mi M j M_j Mj 具有亲戚关系。

接下来 p p p 行:每行两个数 P i , P j P_i,P_j Pi,Pj,询问 P i P_i Pi P j P_j Pj 是否具有亲戚关系。

输出格式

p p p 行,每行一个 YesNo。表示第 i i i 个询问的答案为“具有”或“不具有”亲戚关系。

样例 #1

样例输入 #1

6 5 3
1 2
1 5
3 4
5 2
1 3
1 4
2 3
5 6

样例输出 #1

Yes
Yes
No

这题我们可以拿一个一个存到各各数组里面,如果有相同的就合并

#include<bits/stdc++.h>
using namespace std;
int f[1008611];
int find(int a)
{
    int t1 = a, t2;
    while (f[a] != a) a = f[a];
    while (f[t1] != t1)
    {
        t2 = f[t1]; 
        f[t1] = a;
        t1 = t2;
    }
    return a;
}
int main()
{
    int n, m, p;
    cin>>n>>m>>p;
    for (int i = 1; i <= n; i++)
        f[i] = i;
    int x, y;
    for (int i = 1; i <= m; i++)
    {
        cin>>x>>y;
        f[find(x)] = find(y); 
    }
    for (int i = 1; i <= p; i++)
    {
        cin>>x>>y;
        if (find(x) == find(y)) cout<<"Yes\n";
        else cout<<"No\n";
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冬樱春雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值