集合(定义)
对于面向对象的语言,一般我们在编程的时候自然需要存储对象的容器,数组可以满足这个需求,但是数组初始化时长度是固定的,但是我们往往需要一个长度可变化的容器,因此,集合出现了,它的长度是可以变化的。
二、集合与数组的区别
(1)长度区别:集合长度可变,数组长度不可变
(2)内容区别:集合可存储不同类型元素,数组存储只可单一类型元素
(3)元素区别:集合只能存储引用类型元素,数组可存储引用类型,也可存储基本类型
集合的特点
1.集合是具有某种特定性质,具体的或抽象的对象汇集的总体
2.集合的表示有枚举法和描述法
3.集合有三个性质——确定性,无序性,互异性
4.集合S的所有元素都属于集合T,称S是T的子集
5.如果S是T的子集,T中存在至少一个元素不属于S,称S是T的真子集
6.空集是一个元素都没有的集合,它是所有集合的子集,是所有非空集合的真子集
7.区间一般是实数的子集
8.集合的运算有四种——并、交、差、补
9.集合运算满足交换律、结合律、分配律和对偶律
10.由n个非负整数的元素构成的集合称为有限集,不是有限集的集合称为无限集
11.若无限集的元素可按某种规则排成一列,则称该集合是可列集
12.任一无限集包含可列子集,无限集不一定是可列集
13.可列个可列集之并也是可列集
14.有理数集合Q是可列集
题
亲戚
题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。
题目描述
规定: x x x 和 y y y 是亲戚, y y y 和 z z z 是亲戚,那么 x x x 和 z z z 也是亲戚。如果 x x x, y y y 是亲戚,那么 x x x 的亲戚都是 y y y 的亲戚, y y y 的亲戚也都是 x x x 的亲戚。
输入格式
第一行:三个整数 n , m , p n,m,p n,m,p,( n , m , p ≤ 5000 n,m,p \le 5000 n,m,p≤5000),分别表示有 n n n 个人, m m m 个亲戚关系,询问 p p p 对亲戚关系。
以下 m m m 行:每行两个数 M i M_i Mi, M j M_j Mj, 1 ≤ M i , M j ≤ N 1 \le M_i,~M_j\le N 1≤Mi, Mj≤N,表示 M i M_i Mi 和 M j M_j Mj 具有亲戚关系。
接下来 p p p 行:每行两个数 P i , P j P_i,P_j Pi,Pj,询问 P i P_i Pi 和 P j P_j Pj 是否具有亲戚关系。
输出格式
p
p
p 行,每行一个 Yes
或 No
。表示第
i
i
i 个询问的答案为“具有”或“不具有”亲戚关系。
样例 #1
样例输入 #1
6 5 3
1 2
1 5
3 4
5 2
1 3
1 4
2 3
5 6
样例输出 #1
Yes
Yes
No
这题我们可以拿一个一个存到各各数组里面,如果有相同的就合并
#include<bits/stdc++.h>
using namespace std;
int f[1008611];
int find(int a)
{
int t1 = a, t2;
while (f[a] != a) a = f[a];
while (f[t1] != t1)
{
t2 = f[t1];
f[t1] = a;
t1 = t2;
}
return a;
}
int main()
{
int n, m, p;
cin>>n>>m>>p;
for (int i = 1; i <= n; i++)
f[i] = i;
int x, y;
for (int i = 1; i <= m; i++)
{
cin>>x>>y;
f[find(x)] = find(y);
}
for (int i = 1; i <= p; i++)
{
cin>>x>>y;
if (find(x) == find(y)) cout<<"Yes\n";
else cout<<"No\n";
}
return 0;
}