- overview(总述)

- Classification(分类)

- 分类是有监督的学习(聚类是无监督的学习)
- 二维分类问题

- Training a Classifier

- Bayes Theorem(贝叶斯定理)

- 使用贝叶斯的好处
- 不仅能够得到分类还能到分类概率
- 【条件概率公式】
- P(A|B)=P(AB)/P(B)
- 举例
- Fish Example

- 解释
- 问题:猜捞出来的鱼是金枪鱼还是三文鱼
- 情况1:概率为50%,50%(随便猜)
- 情况2:70%,30%(猜多数的)
- 情况三:已知鱼的颜色(使用贝叶斯 公式)
- 解释
- Shooting Example

- 解释
- 问题:甲乙两人射击,各射一枪,已知靶子被击中,则是甲(乙)击中的概率是多少
- 回答:使用贝叶斯公式
- 解释
- Cancel Example


- 解释
- 问题:当某人的体检报告呈阳性时,他真的得癌症的概率是多少
- 回答:体检报告呈阳性,真正得癌症的概率还是很小的
- 解释
- Headache & Flu Example


- 解释
- 问题:已知流感和头疼的某些先验概率,问头疼的人真的得流感的概率
- 回答:P(F|H)不等于P(H|F)
- 解释
- Fish Example
- 使用贝叶斯的好处
3.1贝叶斯奇幻之旅
最新推荐文章于 2025-10-25 00:23:07 发布
3322

被折叠的 条评论
为什么被折叠?



