9.2群策群议:Bagging

  • Combiners

    • 集成学习的核心:Combiner(因为不同的分类器有不同的输出,最后却要形成一个统一的决定)
      • Majority Voting(少数服从多数)
      • Weighted Majority Voting(加权右下角图中用“阿尔法”表示,每个分类器的权重不同,“老板”说话和“普通员工”说话不同)
  • Diversity
    • 假设、前提:集成学习effective(有用、有效果)的前提是使用不同的分类器

      • Different Learning Algorithms
        • 不同的分类器,例如决策树、支持向量机、神经网络
      • Different Training Processes
        • 大多数情况下,我们倾向于用相同的分类器(更便捷)
          • 使用不同训练集
          • 初始参数不同
          • 特征不同
    • 好处
      • 不需要使用很强的分类器,越强的分类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值