- Combiners

- 集成学习的核心:Combiner(因为不同的分类器有不同的输出,最后却要形成一个统一的决定)
- Majority Voting(少数服从多数)
- Weighted Majority Voting(加权右下角图中用“阿尔法”表示,每个分类器的权重不同,“老板”说话和“普通员工”说话不同)
- 集成学习的核心:Combiner(因为不同的分类器有不同的输出,最后却要形成一个统一的决定)
- Diversity
- 假设、前提:集成学习effective(有用、有效果)的前提是使用不同的分类器

- Different Learning Algorithms
- 不同的分类器,例如决策树、支持向量机、神经网络
- Different Training Processes
- 大多数情况下,我们倾向于用相同的分类器(更便捷)
- 使用不同训练集
- 初始参数不同
- 特征不同
- 大多数情况下,我们倾向于用相同的分类器(更便捷)
- Different Learning Algorithms
- 好处
- 不需要使用很强的分类器,越强的分类
- 假设、前提:集成学习effective(有用、有效果)的前提是使用不同的分类器
9.2群策群议:Bagging
于 2023-12-15 10:35:27 首次发布

最低0.47元/天 解锁文章
1424

被折叠的 条评论
为什么被折叠?



