题意:n牛m食品p饮品
第牛有ai种可行食品,bi种可行饮品
现在进行搭配,一头牛如果既有一份可行食品又有一份可行饮品就称为被满足。
求最多满足。
题解:
别忘了牛拆点、
代码:
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 405 // 网络图中点
#define G 50000 // 网络图中边
#define inf 0x3f3f3f3f
using namespace std;
struct KSD
{
int v,next,len;
}e[G];
int head[N],cnt;
void add(int u,int v,int len)
{
cnt++;
e[cnt].v=v;
e[cnt].len=len;
e[cnt].next=head[u];
head[u]=cnt;
}
queue<int>q;
int d[N],s,t;
bool bfs()
{
memset(d,0,sizeof(d));
int i,u,v;
while(!q.empty())q.pop();
q.push(s),d[s]=1;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i;i=e[i].next)if(e[i].len)
{
v=e[i].v;
if(!d[v])
{
d[v]=d[u]+1;
if(v==t)
return 1;
q.push(v);
}
}
}
return 0;
}
int dinic(int x,int flow)
{
if(x==t)return flow;
int remain=flow,k;
int i,v;
for(i=head[x];i&&remain;i=e[i].next)
{
v=e[i].v;
if(e[i].len&&d[v]==d[x]+1)
{
k=dinic(v,min(remain,e[i].len));
if(!k)d[v]=0;
e[i^1].len+=k,e[i].len-=k;
remain-=k;
}
}
return flow-remain;
}
int n,m,p,maxflow;
bool work()
{
if(scanf("%d%d%d",&n,&m,&p)==EOF)return 0;
int i,a,b,c;
s=n+n+m+p+1,t=n+n+m+p+2,cnt=1;
memset(head,0,sizeof(head));
maxflow=0;
for(i=1;i<=n;i++)add(i,i+n,1),add(i+n,i,0);
for(i=1;i<=m;i++)add(s,i+n+n,1),add(i+n+n,s,0);
for(i=1;i<=p;i++)add(i+n+n+m,t,1),add(t,i+n+n+m,0);
for(i=1;i<=n;i++)
{
scanf("%d%d",&a,&b);
while(a--)
{
scanf("%d",&c);
add(c+n+n,i,1),add(i,c+n+n,0);
}
while(b--)
{
scanf("%d",&c);
add(i+n,c+n+n+m,1),add(c+n+n+m,i+n,0);
}
}
while(bfs())maxflow+=dinic(s,inf);
printf("%d\n",maxflow);
return 1;
}
int main()
{
// freopen("test.in","r",stdin);
while(work());
}