ClassErrorMeter
是PyTorch中一个用于计算分类错误率的工具类。它可以方便地跟踪模型在训练过程中的分类错误情况,并提供了一些方法来计算和获取错误率的值。在本文中,我们将详细介绍如何使用ClassErrorMeter
来计算分类错误率,并提供相应的源代码示例。
首先,我们需要导入必要的库和模块:
import torch
from torchnet.meter import ClassErrorMeter
接下来,我们可以创建一个ClassErrorMeter
对象,并指定类别的数量。假设我们有10个类别:
num_classes = 10
error_meter = ClassErrorMeter