在PyTorch中为不同参数设置不同的学习率

本文介绍了如何在PyTorch中为深度学习模型的不同参数设置不同的学习率,以优化模型。通过创建参数组并指定各自的学习率,使用SGD优化器进行训练,实现更精细的模型调整。示例展示了为线性回归模型的权重和偏置项设置不同学习率的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习中,优化器(optimizer)是训练神经网络时不可或缺的组件之一。PyTorch提供了许多不同的优化器,如SGD、Adam和RMSprop等。然而,有时候我们希望为不同的模型参数设置不同的学习率,以便更好地优化模型。在本文中,我将介绍如何使用PyTorch为不同的参数设置不同的学习率。

首先,我们需要定义一个模型。在这个示例中,我们将使用一个简单的线性回归模型作为示范。

import torch
import torch.nn as nn

# 定义一个简单的线性回归模型
class LinearRegression(nn.Module):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值