【ZYNQ7020_mnist】神经网络在FPGA上的部署实现

项目流程说明

目前的神经网络并不适合在低功耗处理器上进行训练,但是在fpga中单纯用于任务处理还是有点搞头的。。本项目即实现了最最简单网络模型在FPGA上用于识别最最简单手写数字的tiny级任务。

一、生成预先计划的图片数据文件

从网络下载的mnist数据集包括两个csv数据文件,训练集和测试集,需要将其转换为所需的数据文件供PS端加载。

  1. 原始文件 :网络下载的mnist数据集包括两个csv数据文件,训练集和测试集。每个文件中的每一行有785个数据,第一列为标记,之后的是784个0~255之间的像素值;
  2. 需要用数据处理程序读取源文件的某一行并生成 具有特定分隔符 的数据文件;
  3. 仅作为测试用,一个文件只保存一幅图像数据即可,可以随机多生成几个文件,一是防止网络模型识别错误的小概率事件发生,二是相互对照便于比较PS端程序的稳定性;
  4. 数据均转化为0~1之间的浮点数,每个数据为4字节;
  5. 示例程序中使用python脚本读取csv文件,随机生成了5个数据文件。上代码:
import csv
import random

def normalize_pixel_value(value):
    """Normalize the pixel value to be between 0 and 1."""
    return float(value) / 255.0

def read_random_row_from_csv(file_path):
    """Read a random row between 1 and 10 from the CSV file and return as a list of normalized floats, excluding the first value."""
    with open(file_path, newline='') as csvfile:
        reader = list(csv.reader(csvfile))
        random_row_index = random.randint(1, 10) - 1  # Randomly select a row index between 0 and 9 (corresponding to rows 1 to 10)
        random_row = reader[random_row_index]  # Get the selected row
        normalized_data = [normalize_pixel_value(value) for value in random_row[1:]]  # Skip the first value and normalize the rest
        return normalized_data

def write_data_to_file(file_path, data):
    """Write the data to a file with ',\n\r' as the separator."""
    with open(file_path, 'w') as file:
        for value in data:
            file.write(f"{value},\n\r")

def main():
    # Read a random row between 1 and 10 from src.csv
    normalized_data = read_random_row_from_csv('data/mnist_test.csv')

    # Write the normalized data to b.dat
    write_data_to_file('out/a05.dat', normalized_data)

if __name__ == "__main__":
    main()

二、搭建模型,训练神经网络,得到权重参数

  1. 搭建的神经网络为两个隐藏层、一个输入层、一个输出层,均为全连接网络层线性层,即y = A * x + B
  2. 输入层节点数为784,隐藏层节点数为6432,输出层节点数为10
  3. 共有3个网络权重文件和3个偏置数据文件,在网络训练完成后需要各个单独保存
  4. 这6个网络数据文件需要固化在PL端的IP核中;
  5. 示例程序中使用python脚本实现了上述功能。上代码:
# Importing necessary libraries
import numpy
import scipy.special
import matplotlib.pyplot

# Defining the neural network class
class neuralNetwork:

    # Initializing the neural network
    def __init__(self, inputnodes, hiddennodes1, hiddennodes2, outputnodes, learningrate):
        self.inodes = inputnodes
        self.hnodes1 = hidde
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值