题目:
问题描述
题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量大。因为乘号和加号一共就是N-1个了,所以恰好每两个相邻数字之间都有一个符号。例如:
N=5,K=2,5个数字分别为1、2、3、4、5,可以加成:
1*2*(3+4+5)=24
1*(2+3)*(4+5)=45
(1*2+3)*(4+5)=45
……
输入格式
输入文件共有二行,第一行为两个有空格隔开的整数,表示N和K,其中(2<=N<=15, 0<=K<=N-1)。第二行为 N个用空格隔开的数字(每个数字在0到9之间)。
输出格式
输出文件仅一行包含一个整数,表示要求的最大的结果
样例输入
5 2
1 2 3 4 5
样例输出
120
样例说明
(1+2+3)*4*5=120
思路:
dp[i][j]表示前i件物品容量体积为j时的占用空间最大值
则状态转移方程为:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v] + v );
Code:
#include <iostream>
#include <fstream>
#include <cstring>
using namespace std;
const int maxm = 31;
const int maxt = 20010;
int dp[maxm][maxt];
int main(){
// fstream cin("a.txt");
int totalv,totaln;
int v;
cin >> totalv >> totaln;
memset(dp[0], 0, totaln * sizeof(int));//int型数组 全局变量默认为0
for(int i = 1; i <= totaln; ++i){
cin>>v;
for(int j = 1; j <= totalv; ++j){
if(j >= v){
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v] + v);
}
else{
dp[i][j] = dp[i - 1][j];
}
}
}
cout<<totalv - dp[totaln][totalv]<<endl;
return 0;
}