蓝桥杯训练 装箱问题 题解

42 篇文章 2 订阅
23 篇文章 0 订阅
本文介绍了蓝桥杯竞赛中的一道装箱问题,要求在给定的数字序列中插入乘号和加号,使得计算结果最大化。通过举例、输入输出格式的说明,展示了如何通过动态规划求解此问题,并给出了状态转移方程和示例代码。
摘要由CSDN通过智能技术生成

题目:
问题描述
  题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量大。因为乘号和加号一共就是N-1个了,所以恰好每两个相邻数字之间都有一个符号。例如:
  N=5,K=2,5个数字分别为1、2、3、4、5,可以加成:
  1*2*(3+4+5)=24
  1*(2+3)*(4+5)=45
  (1*2+3)*(4+5)=45
  ……
输入格式
  输入文件共有二行,第一行为两个有空格隔开的整数,表示N和K,其中(2<=N<=15, 0<=K<=N-1)。第二行为 N个用空格隔开的数字(每个数字在0到9之间)。
输出格式
  输出文件仅一行包含一个整数,表示要求的最大的结果
样例输入
5 2
1 2 3 4 5
样例输出
120
样例说明
  (1+2+3)*4*5=120

思路:
dp[i][j]表示前i件物品容量体积为j时的占用空间最大值
则状态转移方程为:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v] + v );

Code:

#include <iostream>
#include <fstream>
#include <cstring>

using namespace std;
const int maxm = 31;
const int maxt = 20010;
int dp[maxm][maxt];

int main(){
//  fstream cin("a.txt");
    int totalv,totaln;
    int v;
    cin >> totalv >> totaln;

    memset(dp[0], 0, totaln * sizeof(int));//int型数组 全局变量默认为0

    for(int i = 1; i <= totaln; ++i){
        cin>>v;
        for(int j = 1; j <= totalv; ++j){
            if(j >= v){
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v] + v);
            }
            else{
                dp[i][j] = dp[i - 1][j];
            }
        }
    }


    cout<<totalv - dp[totaln][totalv]<<endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值