蓝桥杯练习 尼姆堆 题解

这是一个关于蓝桥杯竞赛中的尼姆堆问题的题解。题目描述了两人轮流从三堆硬币中取硬币的游戏规则,并指出存在固定的解法——利用二进制模2的加法/异或来判断先手是否能必胜。通过将所有堆的硬币数量进行异或操作,可以判断当前局势和制定获胜策略。文章给出了具体的思路解析和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
有3堆硬币,分别是3,4,5
二人轮流取硬币。
每人每次只能从某一堆上取任意数量。
不能弃权。
取到最后一枚硬币的为赢家。
求先取硬币一方有无必胜的招法。

思路:
这个题有固定的解法,用二进制模2的加法/异或。
具体意思是:将所有堆的数目进行模2加法/异或,如果加起来全为0,那么将要抓堆的这个人就必输了;如果不全为0,那么这个人通过计算抓堆的数量就会让对方输。
举例来说:一共4堆:2,5,12,14
二进制对应:
0010
0101
1100
1110
——
0101
对每个堆的数目进行异或后结果不为0,所以将要抓堆的这个人不会输,那么他如何让对方输呢?
就是在他抓取一次后给对方留的堆的数目异或起来为0,由0101->0000,将左起第2位和第4位变0,分析造成位结果为1的原因,把某一堆堆数量的对应位取反就可以了(0->1or1->0)
由异或运算性质,0异或任何数,其结果=任何数,1异或任何数,其结果=把该数取反。
这个异或运算的结果恰好就是我们想要达到的效果。所以我们可以将所有数异或运算后的结果再与某堆数目进行异或,得到的结果就是该堆剩下的数目。

Code:

#include <iostream>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值