机器学习笔记--常见算法(8)--logistic regression

0.逻辑回归的引出

对分类问题应用线性回归不是一个好主意
二分类问题:
0:negative class
1:positive class

If h(x)>0.5, predict y=1
If h(x)<0.5, predict y=0

Logistic regression: 0<h(x)<1

1.假设函数hypothesis function

线性回归的假设函数为: h θ ( x ) = θ T x h_\theta(x)=\theta^Tx hθ(x)=θTx

S 型函数/Sigmoid function/logistic function: g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1
在这里插入图片描述

logistic回归的假设函数为: h θ ( x ) = g ( θ T x ) h_\theta(x)=g(\theta^Tx) hθ(x)=g(θTx)
其中, g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1
所以,logistic回归的假设函数为: h θ ( x ) = 1 1 + e − θ T x h_\theta(x)= \frac{1}{1+e^{-\theta^Tx}} hθ(x)=1+eθTx1

假设函数 h θ ( x ) h_\theta(x) hθ(x)的意义:
h θ ( x ) = P ( y = 1 ∣ x ; θ ) h_\theta(x)=P(y=1|x;\theta) hθ(x)=P(y=1x;θ)
h θ ( x ) h_\theta(x) hθ(x)表示在 x , θ x,\theta x,θ条件下 y = 1 y=1 y=1的条件概率
在这里插入图片描述

决策边界(decision boundary)
在这里插入图片描述
预测输出y等于0还是1:通过判断z>0或z < 0,即通过判断 θ T x &gt; 0 \theta^Tx&gt;0 θTx>0 or θ T x &lt; 0 \theta^Tx&lt;0 θTx<0
在这里插入图片描述
(上图:通过增加复杂的多项式特征变量(平方,三次方等),可以得到更复杂的决策边界)

2.代价函数cost function

如何拟合逻辑回归模型的参数 θ \theta θ,即给定训练集,根据数据自动拟合参数。
在这里插入图片描述
如果继续使用线性回归时的代价函数,是非凸函数,有局部最优值,当使用梯度下降算法时可能找不到最优值。故选择另一种代价函数。(凸函数是单弓形状,凸函数无局部最优值)

代价函数:
在这里插入图片描述
在这里插入图片描述
代价函数:
J ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x ( i ) ) − y ( i ) ) J(\theta)=\frac{1}{m}\sum_{i=1}^{m}Cost(h_\theta(x^{(i)})-y^{(i)}) J(θ)=m1i=1mCost(hθ(x(i))y(i))
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) l o g ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] J(\theta)=-\frac{1}{m}[\sum_{i=1}^my^{(i)}log(h_\theta(x^{(i)}))+(1-y^{(i)})log(1-h_\theta(x^{(i)}))] J(θ)=m1[i=1my(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

3.优化-梯度下降算法

在这里插入图片描述

(特征缩放:如果特征范围差距很大时,可以用特征缩放的方法,让梯度下降收敛更快(类比线性回归))

其他优化算法:
在这里插入图片描述

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值