P1219 八皇后

题目链接

P1219 八皇后

题目梗概

在NxN的棋盘上摆放N个棋子,使得每行、每列、每条正反对角线上有且仅有一个棋子。请计算一共有多少中摆放方式,并输出摆放方式中字典序前三的摆放方式。

解题思路

字典序问题

以行来深搜,最先搜索到的三种摆放结果即为字典序前三。

行列对角线判断
  • 行:我们是一行一行来搜索的,行不会有重复,不用做判断。
  • 列:建立一个数组col记录每列的结果,如果第i列放入了棋子,则令col[i] = 1。在第j列放入棋子时,检查一下col[j]即可。
  • 反对角线:我们希望能像检查列一样,只需要做一个简单的判断就能完成检查。通过发现,每条反对角线的行列之和是相同的,当要在第i行第j列放棋子时,只需检查bdia[i+j]即可。如图1所示
    在这里插入图片描述
    图1
  • 正对角线:正对角线实际上是和反对角线是相同的,当要在第i行第j列放棋子时,只需检查mdia[i+n-j+1]即可。如图2所示
    在这里插入图片描述

完整代码

#include <iostream>
using namespace std;
int col[14] = {0}, mdia[27] = {0}, bdia[27] = {0}; 
int p[14] = {0};
int n;
int cnt = 0;
void dfs(int f){
	if(f>n){
		if(cnt < 3){
			for(int i = 1;i<=n;++i){
				cout << p[i] << " "; 
			}
			cout << endl;
		}
		++cnt;
		return;
	}
	for(int i = 1;i<=n;++i){
		if(!col[i] && !mdia[f+n-i+1] && !bdia[f+i]){
			col[i] = 1;
			mdia[f+n-i] = 1;
			bdia[f+i] = 1;
			p[f] = i;
			dfs(f+1);
			col[i] = 0;
			mdia[f+n-i] = 0;
			bdia[f+i] = 0;
		}
	}
}
int main(){
	cin >> n;
	dfs(1);
	cout << cnt;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值