题目链接
题目梗概
在NxN的棋盘上摆放N个棋子,使得每行、每列、每条正反对角线上有且仅有一个棋子。请计算一共有多少中摆放方式,并输出摆放方式中字典序前三的摆放方式。
解题思路
字典序问题
以行来深搜,最先搜索到的三种摆放结果即为字典序前三。
行列对角线判断
- 行:我们是一行一行来搜索的,行不会有重复,不用做判断。
- 列:建立一个数组col记录每列的结果,如果第i列放入了棋子,则令col[i] = 1。在第j列放入棋子时,检查一下col[j]即可。
- 反对角线:我们希望能像检查列一样,只需要做一个简单的判断就能完成检查。通过发现,每条反对角线的行列之和是相同的,当要在第i行第j列放棋子时,只需检查bdia[i+j]即可。如图1所示
图1 - 正对角线:正对角线实际上是和反对角线是相同的,当要在第i行第j列放棋子时,只需检查mdia[i+n-j+1]即可。如图2所示
完整代码
#include <iostream>
using namespace std;
int col[14] = {0}, mdia[27] = {0}, bdia[27] = {0};
int p[14] = {0};
int n;
int cnt = 0;
void dfs(int f){
if(f>n){
if(cnt < 3){
for(int i = 1;i<=n;++i){
cout << p[i] << " ";
}
cout << endl;
}
++cnt;
return;
}
for(int i = 1;i<=n;++i){
if(!col[i] && !mdia[f+n-i+1] && !bdia[f+i]){
col[i] = 1;
mdia[f+n-i] = 1;
bdia[f+i] = 1;
p[f] = i;
dfs(f+1);
col[i] = 0;
mdia[f+n-i] = 0;
bdia[f+i] = 0;
}
}
}
int main(){
cin >> n;
dfs(1);
cout << cnt;
return 0;
}