DeepSeek R1 的隐藏提问技巧,可能90%的人用错了!

✔ DeepSeek R1在线使用:https://ai.ninebotai.com

1. 忘掉提示词模板

如果你之前囤了很多提示词模板,在你用Deepseek之前,我建议彻底忘掉!

参考:我要XXX,要给XX用,希望达到 XXX 效果,但担心 XX 问题。

传统上,我们需要使用复杂的提示词模板,就像给别人一份详细的任务清单。然而,DeepSeek 不一样,它就像一个聪明、主动的伙伴,只要告诉它目标和场景,它就能自己思考出最佳的实现方式。

例如,当我们想了解新能源汽车市场时,传统的指令型大模型可能要求:“请扮演新能源汽车行业专家,从市场规模、竞争格局、技术发展趋势等方面分析,每个方面不少于 500 字,并引用权威数据。”得到的回答通常是一篇中规中矩、充满数据和术语的报告,虽然准确,但缺乏实用性,且阅读起来枯燥。

而 DeepSeek 只需简单说明需求:我打算投资新能源汽车,但对行业了解较少。请分析当前市场上值得关注的品牌和车型,介绍它们的优势,以及行业未来几年的发展前景,要求通俗易懂,帮助我做出投资决策。 DeepSeek 会根据需求提供更贴近实际的分析,结合案例和通俗解释,便于我们理解和应用。

d9ddc6827715c94c33443d11c273b79a.jpeg

2. “说人话”

当与 AI 交流时,有时输出会过于专业或抽象,难以理解。DeepSeek 的“说人话”功能就像一把钥匙,能帮助我们更轻松地沟通。

遇到复杂的技术问题,如果回答让人看不懂,只需在追问时加上“说人话”这三个字,DeepSeek 就会用更简单明了的语言重新表达。例如,询问“量子计算机是怎么工作的”时,初次回答可能会涉及很多专业术语和理论,难以理解。加上“说人话”后,DeepSeek 会通过生活中的例子或简单比喻来解释,让我们更容易明白量子计算机的原理。

3. 深度思考,挖掘更多价值

DeepSeek 的最大特点是它能进行深度思考。不同于其他仅仅提供信息的 AI,DeepSeek 能像人一样深入分析和推理,挖掘问题的深层次意义和潜在价值。

当我们问复杂问题时,DeepSeek 会从多方面考虑,给出全面而深入的答案。例如,在讨论“人工智能对未来就业市场的影响”时,它不仅分析哪些行业会受影响、哪些新职位会出现,还会探讨社会如何应对这些变化,以及个人如何提升自己的竞争力。它的回答不仅有事实依据,还有逻辑推理和前瞻性思考,就像在与一位资深专家对话。

然而,随着用户的增多,为了应对计算压力,DeepSeek 的思考时间变短,回答的深度也受到影响。通过使用特定的提示词,我们可以重新激发它的深度思考。例如,使用“请批判性思考至少 10 轮,务必详尽”或“请从反面考虑至少 10 轮,务必详尽”这样的提示,DeepSeek 会恢复到深度思考的状态,提供更有价值的回答。

4. 文风模仿,创意无限

DeepSeek 拥有强大的文风模仿能力,可以为创作开辟无限可能。无论是古代文人的诗词,还是现代作家的独特风格,DeepSeek 都能轻松驾驭,精准还原。

比如,假如你想写一篇春天的散文,模仿朱自清《春》的文风,只需说:“模仿朱自清《春》的文风,写一篇春天的散文。” DeepSeek 会创作出一篇充满诗意、富有美感的散文,完美呈现朱自清的风格。如果你想模仿鲁迅的犀利笔触或莫言的魔幻现实主义,DeepSeek 也能毫不费力地完成。

5aa7bc3071cb8aaef93358709b78c989.png

训练 DeepSeek 提示词的进阶技巧

了解 DeepSeek 的指示词是高效使用 AI 的第一步。要充分发挥它的潜力,还需要掌握一些提示词技巧,提升互动体验,让 AI 在不同场景下更加灵活地应用。

1. 基础技巧:明确、简洁、有上下文

编写提示词时,明确目标非常重要。比如,如果你要写一篇关于健康生活方式的文章,单纯的“写一篇健康生活方式的文章”太模糊,AI 可能不清楚具体要写什么。而如果你说“写一篇约 800 字,面向年轻人的健康生活方式指南,重点讲运动、饮食和睡眠”,这就清晰明确了字数、目标读者和重点内容,AI 就能更准确地生成你需要的内容。

简洁明了的表达同样很关键。避免复杂句式和模糊的词语,尽量简洁直白。例如,“请写一段关于智能手机的介绍,突出拍照和续航”比“能不能帮我写点关于现在智能手机的东西,说说它的好用地方,特别是拍照和电池”更容易让 AI 理解。

提供上下文信息也有助于 AI 更好地理解任务背景。比如,如果你要研究某个历史时期的文化艺术,像“介绍唐朝的文化艺术,特别是诗歌、绘画和音乐的特点”就能给 AI 提供更清晰的指引,生成更符合需求的内容。

2. 优化策略:结构、示例、加限制

结构化提示词能帮助 AI 更好地理解任务的各个要素。例如,在写产品推广文案时,可以结构化地给出提示:“任务:为新款智能手表撰写文案。要求:强调时尚设计、健康监测功能和长续航。格式:每个特点用一个段落介绍,最后总结产品优势。”这样,AI 能够更清晰地生成有条理的内容。

提供示例引导也是一种有效的优化方法。如果希望 AI 生成某种风格的内容,可以提供参考:“像这样,用幽默的语气介绍一款手机:这款手机是你口袋里的超级英雄。请用类似的风格描述智能音箱。”这样的示例帮助 AI 抓住你想要的语气和风格。

设定具体的限制条件有助于避免 AI 输出不符合需求的内容。例如,给出旅游建议时,可以指定:“推荐三个适合亲子游的国内城市,预算 5000 元以内,旅游时长三天,考虑景点的趣味性和安全性。”这样,AI 就能根据这些条件提供合适的旅游建议。

3. 高阶玩法:分步、扮演、善迭代

对于复杂任务,分步引导有助于 AI 逐步处理信息,避免一次性处理过多内容。例如,分析市场时,可以分成几个小问题:“第一步:分析智能手机市场的主要竞争者;第二步:列出每个竞争者的市场份额和产品特点;第三步:预测市场未来的趋势。” 这种方式能帮助 AI 给出更加深入和全面的分析。

角色扮演让 AI 从特定的角度给出更专业的建议。例如,制定餐厅的营销策略时,可以让 AI 扮演市场营销专家:“为新开的意大利餐厅设计一个为期一个月的线上线下推广方案,重点宣传特色菜和舒适的用餐环境。” AI 会结合专业知识,提供可操作的方案。

迭代优化是提高提示效果的关键。如果第一次的回答不理想,可以调整问题。例如,“重新写一篇关于海岛旅行的文章,加入更多对当地风土人情的描写,使用生动的语言展现阳光、沙滩、大海。” 通过多次调整,可以让 AI 输出更符合预期的内容。


避坑指南:使用 DeepSeek 提示词的误区

误区一:过于笼统

当提示词过于模糊时,DeepSeek 很难理解具体需求,从而给出比较宽泛的回答。例如,“介绍科技”这样的提示就太宽泛,DeepSeek 可能只会提供一个大概的概述。相反,如果明确表达需求,比如“介绍人工智能在医疗影像诊断中的应用及发展趋势”,DeepSeek 就能更精准地提供相关信息。

误区二:忽略细节

缺少关键细节会让结果偏离预期。比如说“写一首关于爱情的诗”没有指定风格、字数和目标受众,生成的诗歌可能和你想要的有差距。如果你能提供更多信息,比如“模仿现代浪漫主义风格,写一首 800 字适合情人节朗诵的爱情诗”,AI 就能更精准地生成符合你需求的作品。

误区三:过度复杂

长且复杂的提示词可能导致混淆。例如,“请从历史、文化背景、社会影响等方面分析互联网金融的现状,结合国内外案例,考虑政策影响,最后以图表和文字形式呈现,字数不低于 3000 字”这类要求太多信息,DeepSeek 可能无法准确抓住重点。建议将问题拆成几个简单的问题,帮助 DeepSeek 更好地理解每个任务。

a06a6cc514edaf3df08e81437e23beda.png

### DeepSeek R1 使用教程和最佳实践 #### 实现最佳使用体验的方法 通过三种方案的详细解析,帮助用户实现DeepSeek R1的最佳使用体验。无论用户是技术开发者还是普通使用者,都能找到最适合自己的使用方式[^1]。 #### 秘塔AI搜索引擎 - DeepSeek R1智能搜索集成方案 对于希望提升搜索效率的技术开发者而言,可以考虑采用秘塔AI搜索引擎与DeepSeek R1相结合的方式。这种方式不仅提高了查询速度,还增强了结果的相关性和准确性。具体来说,这种组合利用了DeepSeek R1强大的自然语言处理能力来理解用户的意图,并提供更加精准的结果。 #### 发挥DeepSeek-R1潜力的具体措施 为了更好地发挥DeepSeek-R1的能力,在实际应用过程中需要注意几个方面: - **优化输入提示词**:精心设计提问或指令有助于引导模型给出更贴切的回答; - **合理设置温度参数**:调整生成文本随机性的程度可以在创造性和稳定性之间取得平衡; - **充分利用上下文窗口**:尽可能多地向模型传递背景信息可以让其做出更为连贯合理的推断; 这些实践可以帮助用户在数学推理、代码生成以及自然语言处理等多个领域内获得优异的表现效果[^2]。 #### 针对不同版本的选择指导 当面对多个可用选项时——比如第一代推理模型中的`DeepSeek-R1-Zero` 和 `DeepSeek-R1`——应当依据具体的业务需求作出选择。前者虽然具备出色的零样本学习能力和广泛的泛化范围,但在某些特定场景下的表现可能不如后者稳定可靠。因此如果追求极致性能,则推荐选用经过多阶段训练改进后的`DeepSeek-R1`版本[^3]。 #### 微调以适应特殊应用场景 考虑到并非所有情况下预训练好的通用大模型都能够完全满足个性化的需求,此时可以通过低秩自适应(LoRA)等先进技术手段来进行针对性微调。这种方法允许只修改少量原有结构内的权重值从而达到快速适配新任务的目的,同时也保持了整体架构不变以便后续继续迭代升级。整个过程涉及到了数据集构建、环境搭建直至最终部署上线等一系列环节[^4]。 ```python from peft import LoraConfig, get_peft_model import torch.nn as nn lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], ) model = ... # 加载基础模型 peft_model = get_peft_model(model, lora_config) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值