摘要
在数字化和信息化的时代背景下,大数据技术的迅猛发展为各行各业带来了前所未有的变革。特别是在人力资源领域,大数据技术的应用为就业推荐系统注入了新的活力。传统的就业推荐方式往往依赖于人工筛选和匹配,效率低下且难以满足大规模用户的需求。因此,基于大数据智慧就业推荐系统的设计与实现显得尤为重要。
该系统旨在通过整合和分析海量的就业数据,运用先进的推荐算法,为用户提供精准、个性化的就业推荐服务。通过该系统,求职者可以更加便捷地找到适合自己的职位,而企业也能更加精准地找到符合需求的人才。这不仅有助于提升求职者和企业的匹配效率,还能在一定程度上缓解就业市场的信息不对称问题。
在设计该系统时,我们采用了Spring Boot作为后端框架,利用其轻量级、快速开发和易于部署的特点,实现了高效、稳定的后端服务。通过智慧就业推荐系统的设计与实现,我们期望能够为求职者和企业提供一个更加智能、高效的就业推荐平台,推动人力资源领域的数字化转型和发展。同时,我们也期待该系统能够为解决就业市场的信息不对称问题、提升就业市场的整体效率和质量做出积极的贡献。
关键词:就业推荐系统;后端框架;SpringBoot
Abstract
In the context of digitalization and informatization, the rapid development of big data technology has brought unprecedented changes to various industries. Especially in the field of human resources, the application of big data technology has injected new vitality into employment recommendation systems. The traditional employment recommendation methods often rely on manual screening and matching, which is inefficient and difficult to meet the needs of large-scale users. Therefore, the design and implementation of a smart employment recommendation system based on big data is particularly important.
The system aims to provide users with accurate and personalized employment recommendation services by integrating and analyzing massive employment data and utilizing advanced recommendation algorithms. Through this system, job seekers can more conveniently find suitable positions for themselves, and companies can also more accurately find talents that meet their needs. This not only helps to improve the matching efficiency between job seekers and enterprises, but also to some extent alleviates the problem of information asymmetry in the job market.
When designing the system, we adopted Spring Boot as the backend framework, leveraging its lightweight, fast development, and easy deployment characteristics to achieve efficient and stable backend services. Through the design and implementation of a smart employment recommendation system, we hope to provide job seekers and enterprises with a more intelligent and efficient employment recommendation platform, promoting the digital transformation and development of the human resources field. At the same time, we also hope that the system can make a positive contribution to solving the problem of information asymmetry in the job market, improving the overall efficiency and quality of the job market.
Keywords: Employment recommendation system; Backend framework; SpringBoot
目录
随着信息技术的飞速发展和大数据时代的来临,人力资源市场正面临着前所未有的变革。传统的就业推荐方式已难以满足日益增长的求职者和企业的需求,而大数据技术的出现为就业推荐提供了新的可能性。因此,就业推荐系统的设计与实现成为了当前研究的热点和难点。
选题背景方面,一方面,随着高校扩招和人口红利的逐渐消失,就业市场竞争日益激烈,求职者需要更加精准、个性化的就业推荐服务来帮助他们找到适合自己的职位。另一方面,企业也面临着人才招聘的难题,需要更加高效、智能的方式来找到符合需求的人才。同时,大数据技术的发展为就业推荐提供了海量的数据资源和分析手段,使得基于大数据的智慧就业推荐系统成为可能。
选题意义方面,就业推荐系统的设计与实现不仅可以提高求职者和企业的匹配效率,降低招聘成本,还可以在一定程度上缓解就业市场的信息不对称问题。此外,该系统还可以为政府、高校等机构提供数据支持和决策依据,促进人力资源市场的健康发展。因此,就业推荐系统的设计与实现具有重要的理论价值和实践意义。
在国内,随着大数据技术的快速发展和人力资源市场的变革,就业推荐系统成为了研究的热点。众多学者和企业纷纷投入到这一领域,尝试利用大数据、机器学习等技术手段,提高就业推荐的准确性和效率。目前,国内已经有一些较为成熟的就业推荐系统,如基于用户画像的推荐、基于职位匹配的推荐等。这些系统通过收集和分析用户的个人信息、求职偏好、行为数据等,为用户提供个性化的职位推荐。同时,国内的一些高校和科研机构也在积极研究就业推荐系统,探索更加智能、高效的推荐算法和应用场景。
国外研究现状:
在国外,尤其是欧美等发达国家,就业推荐系统的研究与应用起步较早,已经取得了一定的成果。许多知名的科技公司和研究机构都在这一领域进行了深入的探索和实践。例如,一些国外的招聘网站和社交平台利用用户的行为数据和社交关系,为用户提供精准的职位推荐和人才匹配。此外,一些国外的学者也提出了许多先进的推荐算法和模型,如基于协同过滤的推荐、基于深度学习的推荐等。这些算法和模型在就业推荐领域得到了广泛的应用和验证,为就业市场的智能化发展提供了有力支持。
综上所述,就业推荐系统的设计与实现在国内外都受到了广泛的关注与研究。随着技术的不断进步和市场的不断发展,相信未来会有更加智能、高效的就业推荐系统出现,为求职者和企业带来更好的体验和效益。
论文将分层次经行编排,除去论文摘要致谢文献参考部分,正文部分还会对系统需求做出分析,以及阐述大体的设计和实现的功能,最后罗列部分调测记录,论文主要架构如下:
第1章 交代项目的背景和意义、开发这个系统的现状、研究内容以及论文的章节安排情况。
第2章 对系统的具体需求展开分析。
第3章 阐述了系统的设计,其中涵盖了功能设计以及数据库的设计。
第4章 阐明了基于大数据智慧就业推荐系统各个功能模块的实现,以图文的形式进行展示。
第5章 罗列了部分系统调试与测试的记录。
第6章 介绍了基于大数据智慧就业推荐系统的结论。
基于大数据智慧就业推荐系统存储所使用的是Mysql数据库以及开发中所使用的是IDEA、Tomcat这些开发工具的使用,能够给我们的编写工作带来许多的便利。系统使用SpringBoot框架进行开发,使系统的可扩展性和维护性更佳,减少Java配置代码,简化编程代码,目前SpringBoot框架也是很多用户选择的框架之一。
在开发基于大数据智慧就业推荐系统中所使用的开发软件像IDEA开发工具、Tomcat服务器、MySQL数据库、Photoshop图片处理软件等,这些都是开源免费的,这些环境在学校都进行了系统的学习,自己能够独立操作完成,不需要额外花费,而且系统的开发工具从网上都可以直接下载,因此在经济方面是可行的。
此次项目设计的时候我参考了很多类似系统的成功案例,对它们的操作界面以及功能都进行了系统的分析,将众多案例结合在一起,突出以人为本简化操作,所以具有基本计算机知识的人都会操作本项目。因此操作可行性也没有问题。
基于springboot技术的基于大数据智慧就业推荐系统的设计与实现,系统分为普通用户、企业用户和管理员用户这三大部分,具体需求分析如下:
普通用户:
注册登录: 允许用户注册账号并提供必要信息,以及通过账号密码登录系统,确保用户身份的合法性和安全性。
首页: 展示系统概况、最新的公告消息、招聘资讯、企业招聘等内容,方便用户获取相关信息。
公告消息: 提供系统发布的重要公告信息,确保用户及时获取系统消息,如系统更新、活动通知等。
招聘资讯: 提供用户浏览和获取就业相关的新闻资讯内容,包括行业动态、职场技巧等。
企业招聘: 提供用户查看企业发布的招聘信息,包括职位描述、薪资待遇、工作地点等详细信息。
我的账户: 允许用户管理个人账户信息,包括个人资料、安全设置等。
个人首页: 展示用户个人信息和相关记录。
个人资料: 允许用户查看和编辑个人基本信息,如姓名、联系方式等。
职位申请: 用户可以浏览招聘信息并提交职位申请。
面试邀请: 用户可以查看收到的面试邀请信息。
面试反馈: 用户可以查看面试结果和反馈意见。
录用通知: 用户可以查看被录用的通知信息。
收藏: 允许用户收藏感兴趣的招聘信息或企业信息,方便下次快速查看。
登录: 提供安全的企业用户登录功能,确保只有授权的企业用户可以访问系统后台。
企业招聘管理: 管理企业发布的招聘信息,包括添加新职位、编辑职位信息、下架职位等操作,确保招聘信息的准确性和完整性。
职位申请管理: 管理收到的职位申请,包括查看申请者简历、处理申请状态等操作。
面试邀请管理: 管理发送的面试邀请,包括安排面试时间、发送面试通知等操作。
面试反馈管理: 管理面试过程中的反馈信息,包括记录面试结果、填写反馈意见等操作。
录用通知管理: 管理发送的录用通知,包括确认录用状态、发送录用通知等操作。
管理员端:
登录: 提供安全的管理员登录功能,确保只有授权的管理员可以访问系统后台。
系统用户: 管理系统用户,包括添加新用户、编辑用户信息、删除用户等操作,以确保系统安全性。
个人资料管理: 管理用户的个人资料信息,包括查看、编辑、删除用户个人信息等操作。
职位分类管理: 管理职位的分类信息,包括添加、编辑、删除职位分类等操作,确保职位分类的合理性和完整性。
企业招聘管理: 管理企业发布的招聘信息,包括添加新职位、编辑职位信息、下架职位等操作,确保招聘信息的准确性和完整性。
职位申请管理: 管理用户提交的职位申请信息,包括查看申请者简历、处理申请状态等操作。
面试邀请管理: 管理发送的面试邀请,包括安排面试时间、发送面试通知等操作。
面试反馈管理: 管理面试过程中的反馈信息,包括记录面试结果、填写反馈意见等操作。
录用通知管理: 管理发送的录用通知,包括确认录用状态、发送录用通知等操作。
系统管理: 管理系统首页的轮播图内容,包括添加、编辑、删除轮播图图片和相关链接,提升系统的视觉效果。
公告消息管理: 管理系统发布的公告消息,包括添加新公告、编辑公告内容、设置发布时间等操作,确保信息及时传达。
资源管理(招聘资讯、资讯分类): 管理系统的招聘资讯内容,包括添加、编辑、删除资讯和分类等操作,确保信息的及时更新和完整性。
基于大数据智慧就业推荐系统的非功能性需求比如基于大数据智慧就业推荐系统的安全性怎么样,可靠性怎么样,性能怎么样,可拓展性怎么样等。具体可以表示在如下2-1表格中:
表2.1 基于大数据智慧就业推荐系统非功能需求表
安全性 |
主要指基于大数据智慧就业推荐系统数据库的安装,数据库的使用和密码的设定必须合乎规范。 |
可靠性 |
可靠性是指基于大数据智慧就业推荐系统能够安装用户的指示进行操作,经过测试,可靠性90%以上。 |
性能 |
性能是影响基于大数据智慧就业推荐系统占据市场的必要条件,所以性能最好要佳才好。 |
可扩展性 |
比如数据库预留多个属性,比如接口的使用等确保了系统的非功能性需求。 |
易用性 |
用户只要跟着基于大数据智慧就业推荐系统的页面展示内容进行操作,就可以了。 |
可维护性 |
基于大数据智慧就业推荐系统开发的可维护性是非常重要的,经过测试,可维护性没有问题 |
基于大数据智慧就业推荐系统中用户角色用例图如图2.1所示:

图2.1用户角色用例图
基于大数据智慧就业推荐系统中管理员用户用例图如图2.2所示:
图2.2 管理员用例图
系统中的所有用户(管理员和用户)都可以实现增加数据功能,图2.3显示的就是在增加数据时的流程。
图2.3增加数据流程图
人无完人,每个人都有出错的时候,在录入系统信息的时候如果信息有错,可以对系统中的数据进行编辑。图2.4显示的就是修改数据的流程。
图2.4修改数据流程图
在系统中经常会出现一些过期的数据,比如用户注销等,那就可以直接删除这些数据,图2.5就是删除数据时的流程图。
图2.5删除数据流程图
系功能模块分成了管理员、普通用户、企业用户三个模块,每个模块登录进去对应相应的功能,具体的功能模块图如图3.1所示。

图3.1 基于大数据智慧就业推荐系统功能模块图
数据库的设计承载者系统的各种数据,在建立数据库的时候,主要是数据库模型的设计以及各个数据库表的设计两部分。
下面是整个基于大数据智慧就业推荐系统中主要的数据库表总E-R实体关系图。

图3.2 基于大数据智慧就业推荐系统总E-R关系图
通过前面E-R关系图可以看到项目需要创建很多个数据表。以下是项目中的主要数据库表的关系模型:
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
token_id |
int |
10 |
0 |
N |
Y |
临时访问牌ID |
|
2 |
token |
varchar |
64 |
0 |
Y |
N |
临时访问牌 |
|
3 |
info |
text |
65535 |
0 |
Y |
N |
||
4 |
maxage |
int |
10 |
0 |
N |
N |
2 |
最大寿命:默认2小时 |
5 |
create_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
创建时间: |
6 |
update_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
更新时间: |
7 |
user_id |
int |
10 |
0 |
N |
N |
0 |
用户编号: |
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
article_id |
mediumint |
8 |
0 |
N |
Y |
文章id:[0,8388607] |
|
2 |
title |
varchar |
125 |
0 |
N |
Y |
标题:[0,125]用于文章和html的title标签中 |
|
3 |
type |
varchar |
64 |
0 |
N |
N |
0 |
文章分类:[0,1000]用来搜索指定类型的文章 |
4 |
hits |
int |
10 |
0 |
N |
N |
0 |
点击数:[0,1000000000]访问这篇文章的人次 |
5 |
praise_len |
int |
10 |
0 |
N |
N |
0 |
点赞数 |
6 |
create_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
创建时间: |
7 |
update_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
更新时间: |
8 |
source |
varchar |
255 |
0 |
Y |
N |
来源:[0,255]文章的出处 |
|
9 |
url |
varchar |
255 |
0 |
Y |
N |
来源地址:[0,255]用于跳转到发布该文章的网站 |
|
10 |
tag |
varchar |
255 |
0 |
Y |
N |
标签:[0,255]用于标注文章所属相关内容,多个标签用空格隔开 |
|
11 |
content |
longtext |
2147483647 |
0 |
Y |
N |
正文:文章的主体内容 |
|
12 |
img |
varchar |
255 |
0 |
Y |
N |
封面图 |
|
13 |
description |
text |
65535 |
0 |
Y |
N |
文章描述 |
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
type_id |
smallint |
5 |
0 |
N |
Y |
分类ID:[0,10000] |
|
2 |
display |
smallint |
5 |
0 |
N |
N |
100 |
显示顺序:[0,1000]决定分类显示的先后顺序 |
3 |
name |
varchar |
16 |
0 |
N |
N |
分类名称:[2,16] |
|
4 |
father_id |
smallint |
5 |
0 |
N |
N |
0 |
上级分类ID:[0,32767] |
5 |
description |
varchar |
255 |
0 |
Y |
N |
描述:[0,255]描述该分类的作用 |
|
6 |
icon |
text |
65535 |
0 |
Y |
N |
分类图标: |
|
7 |
url |
varchar |
255 |
0 |
Y |
N |
外链地址:[0,255]如果该分类是跳转到其他网站的情况下,就在该URL上设置 |
|
8 |
create_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
创建时间: |
9 |
update_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
更新时间: |
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
auth_id |
int |
10 |
0 |
N |
Y |
授权ID: |
|
2 |
user_group |
varchar |
64 |
0 |
Y |
N |
用户组: |
|
3 |
mod_name |
varchar |
64 |
0 |
Y |
N |
模块名: |
|
4 |
table_name |
varchar |
64 |
0 |
Y |
N |
表名: |
|
5 |
page_title |
varchar |
255 |
0 |
Y |
N |
页面标题: |
|
6 |
path |
varchar |
255 |
0 |
Y |
N |
路由路径: |
|
7 |
position |
varchar |
32 |
0 |
Y |
N |
位置: |
|
8 |
mode |
varchar |
32 |
0 |
N |
N |
_blank |
跳转方式: |
9 |
add |
tinyint |
3 |
0 |
N |
N |
1 |
是否可增加: |
10 |
del |
tinyint |
3 |
0 |
N |
N |