什么是汉诺塔:
汉诺塔:(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘
怎么用实现汉诺塔:
1: 先给三个柱子A,B,C 2: 三个需要移动的方块 1 , 2 , 3
每次移动的时候要保证大盘子在小盘子的下面
假如只有一个盘子
那么只需要把A柱的1号,移动到C柱
盘子数量 次数 步骤
1 1 A---C
假如有两个盘子:
1: 把在A柱的2号移动到B柱 2:再把A柱的1号移动到C柱 3: 最后把B柱的2号移动在C柱
盘子数量 次数 步骤
2 3 A---B , A---C ,B---C
假如有三个盘子要怎么实现
1:把A柱的3号移动到C柱 A---C
2:把A柱的2号移动到B柱 A---B
3:把C柱的3号移动到B柱 C---B
4:把A柱的1号移动到C柱 A---C
5:把B柱的3号移动到A柱 B---A
6:把B柱的2号移动到C柱 B---C
7:把A柱的3号移动到C柱 A--C
盘子数量 次数 步骤
3 7 A---C , A---B , C---B , A---C , B---A , B---C , A---C
总结:假设有n个盘子,那就需要移动 2^n-1 次
怎么用C语言实现汉诺塔的移动
1:先写一个主函数
int main()
{
return 0;
}
2:写一个函数来模拟这个过程
void move(char POS1, char POS2)
{
printf(" %C---%C ", POS1, POS2);
}
3:写一下汉诺塔
前言:假如有n个盘子,把n-1个盘子通过C柱移动到B柱
// n 代表盘子的个数
// POS1 代表 A 起始位置
// POS2 代表 B 中转位置
// POS3 代表 C 目的位置
void Hanoi(int n, char POS1, char POS2, char POS3)
{
}
3.1:递归需要一个终止条件,这个if语句的意思是 如果有1个盘子,那么从POS1 移动到 POS3
void Hanoi(int n, char POS1, char POS2, char POS3)
{
// 1:递归需要一个终止条件
if (n == 1)
{
move(POS1, POS3);
// 如果有1个盘子,那么从POS1 移动到 POS3
}
}
3.2: n-1个盘子在POS1 通过POS3 移动到 POS2
void Hanoi(int n, char POS1, char POS2, char POS3)
{
if (n == 1)
{
move(POS1, POS3);
}
else
{
Hanoi(n - 1, POS1, POS3, POS2);
// n-1个盘子在POS1 通过POS3 移动到 POS2
}
}
3.3: 如果把n-1个盘子已经移动到POS2 ,那么就把POS1的一个移动到POS3
void Hanoi(int n, char POS1, char POS2, char POS3)
{
if (n == 1)
{
move(POS1, POS3);
}
else
{
Hanoi(n - 1, POS1, POS3, POS2);
move(POS1, POS3);
// 如果把n-1个盘子已经移动到POS2 ,那么就把POS1的一个移动到POS3
}
}
3.4: 此时POS2 还有n-1个盘子
把POS2的起始位置 通过POS1的中转位置 移动到POS3目的位置
void Hanoi(int n, char POS1, char POS2, char POS3)
{
if (n == 1)
{
move(POS1, POS3);
}
else
{
Hanoi(n - 1, POS1, POS3, POS2);
move(POS1, POS3);
Hanoi(n - 1, POS2, POS1, POS3);
// 此时POS2 还有n-1个盘子
// 此时的POS2就相当于起始位置
// 把POS2的起始位置 通过POS1的中转位置 移动到POS3目的位置
}
}
最后:肯定是打印代码看看
int main()
{
Hanoi(1, 'A', 'B', 'C');
printf("\n");
Hanoi(2, 'A', 'B', 'C');
printf("\n");
Hanoi(3, 'A', 'B', 'C');
return 0;
}
和前面用画图解释的一模一样
总代码加注释版本,不懂一定要多调试
#include<stdio.h>
void move(char POS1, char POS2)
{
printf(" %C---%C ", POS1, POS2);
}
// n 代表盘子的个数
// POS1 代表 A 起始位置
// POS2 代表 B 中转位置
// POS3 代表 C 目的位置
void Hanoi(int n, char POS1, char POS2, char POS3)
{
// 1:递归需要一个终止条件
if (n == 1)
{
move(POS1, POS3);
}
// 如果有1个盘子,那么从POS1 移动到 POS3
else
{
Hanoi(n - 1, POS1, POS3, POS2);
// n-1个盘子在POS1 通过POS3 移动到 POS2
move(POS1, POS3);
// 如果把n-1个已经移动到POS2 ,那么就把POS1的一个移动到POS3
Hanoi(n - 1, POS2, POS1, POS3);
// 此时POS2 还有n-1个盘子
// 此时的POS2就相当于起始位置
// 把POS2的起始位置 通过POS1的中转位置 移动到POS3目的位置
}
}
int main()
{
Hanoi(1, 'A', 'B', 'C');
printf("\n");
Hanoi(2, 'A', 'B', 'C');
printf("\n");
Hanoi(3, 'A', 'B', 'C');
return 0;
}
汉诺塔的游戏大家可以玩一下