这题乍看之下似乎没有思路,如果对矩阵的每一行的翻转结果进行计算,进行比较,就会发现进下来的路很难走。
但是,我们没有必要一行一行的计算。对矩阵中的每一个树,其实可以看作一个加权,假定每一行有 n 个数,则第 i 行 j 列的权值为 2n-j-1,权值按行从左往右递减,其每一列的权值相同,因此可以通过纵向比较,确保每一列取最大值,即可确保最终结果取得最大值。
首先要通过行变换保证每行第一个元素值为1。为什么是行变换?其实列变换也可以,但是列变换为1,说明此前通过行变换将第一个元素全变为0,多此一举,于后面的计算也不方便。
接着通过列变换使每一列的1的个数达到最多,是1最多自不必提,关键是为什么是列变换?因为我们之前通过换变换将第一位都置为1了,如果通过奇数次行变换,则会改变首位,通过偶数次行变换,等于没变换,所以只能使用列变换。
计算过程使用位运算提高效率。
class Solution {
public:
int matrixScore(vector<vector<int>>& A) {
int row_size(A[0].size());
int col_size(A.size());
vector<bool> mask(col_size); // 用于标记行进行了行变换
for (int i(0); i < col_size; ++i) mask[i] = !A[i][0]; // A[i][0]如果为0则进行行变换,mask[i]置 1
int ans((1<<(row_size-1))*col_size);
for (int i(1); i < row_size; ++i) {
int cnt(0); // 通过列1的个数,判断是否需要列变换
for (int j(0); j < col_size; ++j) {
if (A[j][i]^mask[j]) ++cnt;
}
cnt = max(cnt, col_size-cnt);
ans += (1<<(row_size-i-1))*cnt;
}
return ans;
}
};
运行结果: